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Abstract

Lopes, Elias Dias Rossi; Ayala, Helon V. H. (Advisor). Advan-
ced Estimation and Control Applied to Vehicle Dynamic
Systems. Rio de Janeiro, 2022. 142p. Tese de Doutorado – Depar-
tamento de Engenharia Mecânica, Pontifícia Universidade Católica
do Rio de Janeiro.

The rising demand of autonomous and intelligent transportation systems
requires the development of advanced control and estimation techniques, ai-
ming to ensure safety and efficient operations. Due to the nonlinear nature of
vehicle dynamics and its characteristic phenomena, classical estimation and
control methods may not achieve adequate results, which encourages the rese-
arch of novel algorithms. By some contributions, the first part of this work deals
with estimation algorithms, both for identification of time invariant parameters
and for estimation of states and time varying parameters. Special emphasis is
given to Moving-Horizon State Estimation (MHSE), which is presented to be
robust and accurate, due to the constrained optimization problem on which
it is based. This algorithm is evaluated in vehicle longitudinal dynamics, for
slip and tire-road friction estimation. Despite its efficiency, the high computa-
tional cost makes it necessary to search for suboptimal alternatives, and the
employ of a Neural Networks that maps the optimization results is a promi-
sing solution, which is treated as Neural Networks Moving-Horizon Estimation
(NNMHE). The NNMHE is evaluated on a state-of-charge (SOC) estimation
of batteries for electric vehicles, demonstrating, through experimental data,
that the NNMHE emulates accurately the optimization problem, and the li-
terature indicates its effectively application on embedded hardware. Finally,
a contribution about Nonlinear Model-based Predictive Control (NMPC) is
presented. It is proposed and evaluated its use compounding a novel hierarchi-
cal control framework for electric vehicles with independent in-wheel motors,
through which it is possible to adequately control the vehicle on velocity and
path tracking tasks, with reduced computational effort. The control is evalu-
ated using experimental obtained tire data, which approaches the simulation
to real situations.

Keywords
System Identification; Vehicle Dynamics; Electric Vehicles; Moving-

Horizon State Estimation; Model-based Predictive Control.
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Resumo

Lopes, Elias Dias Rossi; Ayala, Helon V. H.. Estimação e Con-
trole Avançados Aplicados a Sistemas Dinâmicos Veicula-
res. Rio de Janeiro, 2022. 142p. Tese de Doutorado – Departamento
de Engenharia Mecânica, Pontifícia Universidade Católica do Rio
de Janeiro.

A crescente demanda por sistemas de transporte autônomos e inteligentes
exige o desenvolvimento de técnicas avançadas de controle e estimativa, visando
garantir operações seguras e eficientes. Devido à natureza não linear da
dinâmica veicular e seus fenômenos característicos, os métodos clássicos de
estimativa e controle podem não alcançar resultados adequados, o que incentiva
a pesquisa de novos algoritmos. Por algumas contribuições, a primeira parte
deste trabalho trata de algoritmos de estimação, tanto para identificação
de parâmetros invariantes no tempo, quanto para estimação de estados e
parâmetros variantes no tempo. Especial destaque é dados aos algoritmos de
Estimação de Estados por Horizonte Móvel (MHSE), que se apresenta como
robusto e preciso, devido ao problema de otimização com restrição em que se
baseia. Este algoritmo é avaliado em dinâmica longitudinal de veículos, para
estimativa de deslizamento longitudinal e coeficiente de atrito pneu-estrada.
Apesar de sua eficiência, o alto custo computacional torna necessária a busca
por alternativas sub-ótimas, e o emprego de Redes Neurais que mapeiam
os resultados da otimização é uma solução promissora, que é tratada como
Estimação por Horizonte Móvel com Redes Neurais (NNMHE). O NNMHE é
avaliado em uma estimativa do estado de carga (SOC) de baterias para veículos
elétricos, demonstrando, através de dados experimentais, que o NNMHE emula
com precisão o problema de otimização e a literatura indica sua aplicação
efetiva em hardwares embarcados. Por fim, é apresentada uma contribuição
sobre o controle preditivo baseado em modelo não linear (NMPC). É proposto
e avaliado seu uso compondo uma nova estrutura de controle hierárquica para
veículos elétricos com motores independentes nas rodas, através do qual é
possível controlar adequadamente o veículo em tarefas de rastreamento de
velocidade e trajetória, com reduzido esforço computacional. O controle é
avaliado usando dados experimentais de pneus obtidos, que aproximam a
simulação de situações reais.

Palavras-chave
Identificação de Sistemas; Dinâmica de Veículos; Veículos Elétricos;

Estimação de Estados de Horizonte Móvel; Controle Preditivo baseado em
Modelo.
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For I know the thoughts that I think toward
you, says the Lord, thoughts of peace and not
of evil, to give you a future and a hope.

Jeremiah, 29:11.
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1
Introduction

There is a growing interest from researchers in Electric Vehicles (EV).
This research trend has increased more than 10 times in the last decade [1].
The main objective of this broad subject is to develop technologies aiming at
decreasing emissions of greenhouse gases and air pollution, and the reduction of
the use of fossil fuels, in favor of renewable sources of energy [2]. Research has
many themes, from charging infrastructure to psychological aspects, including,
evidently, vehicle design and technology. This trend is relevant both for
passenger and commercial vehicles [3], about its high possible demand and
actual employment in European Union.

There are different configurations of EV [2], and we may, firstly, distin-
guish hybrid and pure electric ones. In pure electric vehicles (PEV), batteries
are the only source of energy, and they are characterized by fast and smooth
acceleration and no emission of polluting gases. In most of these vehicles,
known as Plug-in EV, batteries may be recharged by external power sources,
which constitutes a challenge in future infrastructure projects [4, 5]. Alterna-
tive energy sources for pure electric vehicles are fuel cells, photovoltaic cells
and regenerative braking systems [4].

Hybrid electric vehicles (HEV) present both internal combustion engines
(ICE) and electric motors and these sources may be mounted in series, parallel
or combined configurations. In Series HEV, the vehicle is powered mainly by
the electric motor and fuel energy is used to move the motor, recharge the
battery pack and drive an electric generator, so that the ICE works at optimum
speed, reducing emissions and fuel consumption. Parallel HEVs are powered
both by an electric motor and an internal combustion engine, and each one may
be individually triggered, depending on the operation mode and conditions.
Among Parallel HEVs, there is, also, a combined version, in which the electric
motor, the ICE, the electric generator and the wheels are linked by mechanical
devices, such as planetary gear sets, so that both work simultaneously. HEV
may have as an energy source only the fuel or, may be plug-in vehicles. In
these cases, they are called Plug-in HEV or Extended-Range EV.

All EV kinds are hardly dependent on an efficient Battery Management
System (BMS), which is one of the most challenging research themes in this
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Chapter 1. Introduction 18

field, since it is critically related to the autonomy of EVs and, therefore, to
the practical use of these vehicles. One of the tasks performed by the BMS
is the estimation of the State of Charge (SOC) of the batteries, which must
be done using filtering algorithms, since it is not directly measurable [6]. This
variable is important to indicate the status of the battery for the sole purpose
of monitoring, but it may also be used as input for the traction controller or
charging stations in the context of smart grids [7]. For example, it is possible
to define control laws with optimized SOC preservation or recharging using
economical model predictive control [8, 9]. As SOC is nonlinearly related to
current input and must be indirectly estimated on an unknown time-varying
battery, it is nontrivial to operate even a single one in charging/discharging
scenarios [10]. The case of many EV batteries and varying electricity prices
are even a bigger challenge to solve from both user and utility service points
of view [11, 12]. SOC estimation is thus an important issue and doing that
accurately and online using limited computational resources is difficult.

It is important to remark that most versions of previous kinds of EV,
are equipped with central power sources, so that axles, inter-axle differentials
and Ackermann steering mechanisms are needed. In recent developments, In-
Wheel Motor Drive Electric Vehicles (IWMD-EV) are proposed for vehicle
motion and steering. In this configuration, two or more wheels have torque
and steering angle independently controlled. Each motion wheel has a motor
in its hub, so that all driveshafts, differentials, gearboxes and gear sets are
expendables.

Murata [13] remarks that IWMD-EV has faster response, precise torque
generation, the capability of both forward and reverse torque generation and is
not affected by limitations imposed by low natural frequencies of driveshafts.
Besides that, it may be used in driving, turning, stopping and other driving
conditions. Consequently, a vehicle with IWMD-EV (details in Figure 1.1)
presents more control possibilities, since it has more degrees of freedom (DOF),
when compared with conventional designs. This is important to achieve better
results, even under many requirements and constraints to control law.

Some researches on EV also comprise autonomous vehicles (AV) subject,
which is a fertile field of research [14, 15], and may include estimation and
control tasks.

Nonlinear observers are usually implemented on many vehicular applica-
tions, especially those related to tire dynamics, such as traction, braking, and
stability control systems. Some tire states are non directly measurable, such
as longitudinal slip and side-slip angle, as well as model parameters, such as
friction coefficient and cornering stiffness, which are difficult to be accurately
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x

y

in-wheel

motor

Figure 1.1: In-Wheel Motor Drive Electric Vehicle Model. This vehicle has
more degrees of freedom, since the wheels have independent angular velocities
(ωi) and steering angles (δi).

defined and may change due to road conditions. Moreover, correctly inferring
the friction-related parameters linked to tire and soil interaction is necessary
for optimal and safe performance of ground vehicles. Such issue is important
for lateral and longitudinal dynamics for agile and critical operation, as well
as with yaw and roll rates.

For intelligent and autonomous vehicles, the accurate determination of
these parameters also affects the efficiency of control laws, specially Model-
based Predictive Control (MPC) ones, since tasks such as path tracking and
controlled anti-lock braking depend on accurate system models. In these and
other MPC applications for autonomous navigation, it is useful to estimate
friction parameters in each sample, so that a current value is used on the MPC
optimization algorithm. In these cases, the use of state and parameter nonlinear
observers becomes necessary. The authors of [16] remark the importance of the
peak value of the adherence coefficient between tire and road for controlling
motion, path planning, and path tracking of intelligent vehicles, as they are
related to the maximum adhesion operating envelope.

The implementation of nonlinear observers is the focus of many studies,
but their effectiveness depends on the specificities of each nonlinear dynamic
model and there are many classical techniques already defined [17]. Using the
state-space formalism, Kalman Filter (KF) is among the most known and
used, such as appointed by [18]. For nonlinear estimation, two approaches are
remarked [17]: the Extended Kalman Filter (EKF) and the Unscented Kalman
Filter (UKF), which are comprehensively studied in the literature, especially
the first algorithm [19–21].
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Recently, optimization-based methods have been developed, looking
for robustness and accuracy [22], namely, Moving Horizon State Estimation
(MHSE), in which states are estimated using a constrained optimization prob-
lem, that takes into account the model dynamic equations and a defined hori-
zon of recent information and output measures. This algorithm is cited in the
literature as robust and powerful, even for systems with model uncertainties,
numerical errors, and noisy measures [22]. The author of [23] evaluates this al-
gorithm in many applications so that it is possible to understand its capacities
and robustness. It is also demonstrated that MHSE may provide flexibility for
the estimator design, through alternative versions of the algorithm [24]. De-
spite such features, MHSE has been little explored in the context of friction
estimation. We are therefore motivated to use it here, as we shall describe next
after the state-of-the-art review.

Estimation methods are also important for BMS, especially for SOC
monitoring. As batteries dynamics are commonly defined by Equivalent Circuit
Models (ECM), SOC estimation usually also requires parameter identification,
which many works treat as a separate task in the estimation process [25–33].
For this purpose, many algorithms and techniques have been proposed, among
which the KF and Least Squares (LS) are the most widely adopted for this
application [6]. As well as the previous case, the EKF is largely explored for
SOC estimation, due to its simpler implementation and reduced processing
time [34–41].

However, many advanced techniques, such as MHSE, have the potential
to be applied to this task, even for simultaneous estimation of states and pa-
rameters, through an augmented states formulation of the dynamical model.
Despite presenting optimal results, the MHSE computational effort is consid-
erably higher when compared to Kalman-based approaches, as it involves the
resolution of a nonlinear optimization problem at each sampling step. Nonethe-
less, approximate solutions obtained by offline trained Artificial Neural Net-
works (ANN) may provide adequate results with low processing time [42],
showing that machine learning may be employed to approximate the state es-
timation task with a Neural Network Moving-Horizon Estimation (NNMHE).
In the literature review presented in the following chapter, it is evidenced that
the receding-horizon algorithms are not evaluated for simultaneous estimations
of states and parameters on battery systems for electric vehicles.

Regarding advanced control, optimal control techniques, among which
the Model-based Predictive Control (MPC), or its nonlinear version (NMPC),
are potentially evaluated, as a response to the increasing demand of different
levels of automation on vehicles. As a dual of MHSE, the MPC is a constrained
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optimization problem and, consequently, is characterized as flexible, robust and
accurate [43], since we may consider many states and situations on the cost
function. Besides that, as it is predictive, its answer trends to be faster than
reactive techniques.

In vehicle control, many objectives may be achieved with MPC, such as
slip control [44, 45], path tracking [44, 46, 47], stability [44, 47, 48], feasible
regions [46] and safety [45, 47, 48], which denotes the flexibility of this control
technique. Even though, MPC applications are not always feasible, due to the
high processing time that may be required. As a possible solution, hierarchical
frameworks may be used [49, 50], which may be designed properly to enable
online applications.

1.1
Objectives

The general objective of this thesis is to present five contributions
regarding advanced control and estimation of ground and aircraft vehicle
systems. The specific objectives of the presented contributions are:

– Contribution 1: Present a nonlinear identification methodology for a
four degree of freedom landing gear model that includes the gear walk
phenomenon;

– Contribution 2: Evaluate the performance of EKF, UKF and MHSE
for state estimation of nonlinear systems, which is analyzed on slip
estimation of a ground vehicle during traction and braking processes,
which is characterized by nonlinear and discontinuity efforts. Moreover,
their limitations and advantages are presented, aiming at future control
applications on autonomous vehicles;

– Contribution 3: Compare three nonlinear observers, namely EKF, UKF
and MHSE, for simultaneous states and friction coefficient estimation of
an EV with independent in-wheel motors. These observers are studied to
be used on MPC algorithms for EV path tracking and handling control,
in which a correct and current value of friction coefficient is essential for
optimizing the vehicle performance. The observers are evaluated with
simulated and experimental data;

– Contribution 4: Present receding-horizon observers for SOC estimation
of lithium-ion batteries. The first strategy presented is the MHSE, which
is presented to be powerful enough to estimate states and parameters of
an equivalent circuit model through an augmented states formulation.
Its results are proposed to be used in the training of the NNMHE,
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which employs the receding-horizon information to predict the SOC of
the battery;

– Contribution 5: Evaluate a novel framework, in which the MPC is
performed using only the rigid-body dynamics of the vehicle chassis,
aiming to define the reference forces on the body frame, which are used
to establish references to wheel angular velocities and steering angles
through mathematical models of the tire forces.

1.2
Document Organization

The remainder of this thesis document is organized as follows. The first
part is dedicated to exposing the context, motivation, literature review and
contributions of the thesis. In the second part, the theoretical background is
presented, in which we describe the vehicle dynamic systems models employed
in the proposed contributions. Besides that, the algorithms for states and
parameters estimation and the MPC optimization problem are described, with
details for their implementation, as used in this work. In the third part, the
contributions of the thesis are exposed, with the details inherent to each one,
such as the specific problem definition, the results and a discussion about them.
In the last part, the conclusions of the thesis are discussed, as well as the
possible future research that may be executed using the knowledge developed
in this work.
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2
Related Works and Originality Claims

This chapter is dedicated to presenting and discussing recent research
related to this work. For each objective mentioned in section 1.1, a literature
review is presented, with a critical analysis of the research gaps and the
relevance of the issue in the related field. Afterward, the original contributions
of this thesis are presented in the later section, respecting each of the objectives.

2.1
Critical Literature Review

The critical literature review is divided according to the objectives listed
in Section 1.1 and at the end of each subsection, a critical analysis is presented.

2.1.1
Grey-box Identification of Time Invariant Parameters

For a robust design for antiskid control of aircraft brake systems, the gear
walk phenomenon must be considered, since the estimation of braking force
depends on the angular velocity of the wheel and the velocity of the wheel hub.
Pritchard [51] remarks on the relevance of the study of the dynamics of landing
gear, mainly due to the effects of vibration and shimmy induced by braking,
highlighting its criticality on aircraft safety. Krüger et al. [52] give a complete
review of landing gear requirements and operational conditions. They describe
the drop test and remark on its importance to analyze the stiffness and inertial
of each element, to evaluate the behavior of the shock absorber and of the wheel
and tire. Sinou et al. [53] study an experimental approach of friction-induced
vibration on aircraft brake, remarking the number of researches on this subject.
Luo and Zhao [54] propose a spatial landing gear mechanism to achieve higher
stiffness and higher strength, demonstrating that these properties are closely
dependent on the geometry and the constraints between the bodies.

We may observe many studies that are dedicated to understanding the
dynamics of landing gears and improving their performance, since it is a critical
system for aircraft security [52]. Moreover, the physical phenomena involving
the tires have important effects on the system dynamics and they must be
considered in developed models. Van Slagmaat [55] develops a nonlinear model
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for landing gear simulation, using the magic formula for tire dynamics. Yadav
and Singh [56] present an optimal anti-skid braking control based on a one-step-
ahead prediction of the braking force required, aiming to reduce the landing
run. Gualdi et al. [57] feature a multi-body landing gear model, demonstrating
the effect of gear walk, to be employed as a design tool for anti-skid landing gear
braking control. D’Avico et al. [58] presents a control-oriented model of landing
gear, using the Burckhardt tire model for determining the braking forces. This
model is validated experimentally, as presented in [59]. The suppression of gear
walk phenomenon is studied by Yin et al. [60], who propose an anti-skid control
that minimizes the maximum gear walk angle, satisfying other constraints.
Jiao et al. [61] propose an anti-skid brake control with the identification of
the runway characteristics and the tire conditions, so that it is possible to
estimate the maximum friction force. They obtain, as result, a considerable
improvement in the braking efficiency when compared to algorithms based
only on wheel deceleration. Chen et al. [62] present an improved braking control
algorithm, which considers both the wheel deceleration and longitudinal slip, to
enhance the robustness and the efficiency of the braking process. Tourajizadeh
and Zare [63] propose a robust and optimal nonlinear control of shimmy
vibration, remarking on the importance of minimizing this vibration on aircraft
performance and security. Somakumar and Chandrasekhar [64] propose an
intelligent anti-skid brake controller based on a neural network, with learning,
nonlinear mapping and pattern-recognition abilities. It defines the brake torque
after analyzing the runway condition, so that the braking is optimum.

The design of a landing gear is evaluated on many tests, among which
there is the drop test. It consists in lifting the landing gear in a specific testbed
and dropping it from a height that will cause a desired impact velocity. Among
the measurements commonly made, the horizontal force is very important as
it affects directly the gear walk phenomenon [65]. Xue et al. [66] present a
method of optimizing the damper coefficient of an amphibious landing gear by
means of simulation and drop test, which illustrates the large application of
this test on aircraft design. Shixing et al. [67] study a drop test of a landing gear
with a magneto-rheological (MR) fluid damper, assessing the influence of this
component on the dynamics and performance of the landing gear. This kind of
damper is also the focus of Li et al. [68], who present a MR damper structure for
landing gear, commenting on its main advantages, such as adjustable damping
force, simple structure and independence of external energy. Wei et al. [69]
develop a more complex model for landing gear fall dynamics. The model
presented has two degrees of freedom and adds viscous friction and grip effects
to the Coulomb friction model.
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The drop test may also be used for evaluating the gear walk and predict-
ing the structural stiffness and damping of the landing gear, by identification
techniques. Fallah et al. [70] demonstrate the importance and influence of
structural parameters in the design and control of vibrations on aircraft land-
ing gears. This phenomenon is not considered on ground vehicles, because the
braking forces are not of the same scale. The drop test measurement system is
also the focus of some recent research, as presented by Pytka et al. [71]. They
feature a dynamometer wheel for landing gear tests. The measurement system
is designed for obtaining the vertical load and longitudinal forces acting in the
wheel, as well as the moments around all the axes.

Batill and Bacarro [72] feature a nonlinear identification of a single
degree of freedom of landing gear system, applying Newtonian Iteration. It
considers the suspension and structure both linear and nonlinear, when is
used the hydropneumatic damper on the airplane. The identification process
of mechanisms is most explored in robotic systems. These methods are well
explored by Wu et al. [73], who give an overview of dynamic parameter
identification of serial and parallel robots, summarizing the main methods used
and the advantages and disadvantages of each one. Oliviers and Campion [74]
propose a methodology for parameters identification in a nonlinear model of a
robot with flexible arms. So, both inertial and elastic parameters are estimated,
and the kinematics must consider the displacements due to the flexibility of
the bodies.

Díaz-Rodríguez et al. [75] present a methodology for dynamic parameters
identification of a 3 degree of freedom (DOF) parallel robot. They explain that
not all the parameters may be properly identified, and they apply the weighted
least squares method for determining the relevant ones. This method is also
used by Bahloul et al. [76] on an identified model for a 6-DOF industrial robot,
based on the inverse dynamic equations. Gao et al. [77] present a parameter
identification method based on Denavit-Hartenberg model, validated on a
6-DOF industrial robot. They suggest a modified least-squares algorithm,
designed to minimize the residual movement uncertainties and the application
of singular value decomposition for determining the parameters most relevant.

2.1.2
State Estimation of Vehicle and Tire Dynamics

In the context of state estimation on vehicle systems, the authors of [19]
propose the use of EKF associated with Recursive Least Squares and Neural
Networks in a methodology of estimation of road friction coefficient, which is
a hardly obtaining parameter. Kayacan et al. [78] present a control strategy
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for tracked field robots with receding horizon estimation and control (RHEC).
The estimation algorithm is used to estimate states and parameters, and the
receding horizon control is based on an adaptive system whose model is time-
varying. Li et al. [79] present an EKF based estimator for sideslip angle for a
vehicle stability control and the authors remark that its measure is complex
and expensive, which justifies the estimation process. Sun et al. [80] apply a
nonlinear observer for state estimation on an ABS, due to the nonlinearity of
the friction force during brake.

Boada et al. [81] develop a new method for estimation of different states
and parameters of a vehicle, using a constrained version of Kalman Filter
to consider the physical limitations of the parameters. It is demonstrated
by experimental results that the constraints are important to improve the
accuracy of the algorithm. The authors of [82] present two torque estimation
methods for vehicle engines, using a proper dynamical model and air mass flow
rate and engine speed, which are measurable. In [83] a road slope and position
estimator is presented, which inputs are GPS data and vehicle onboard sensors.
The estimator proposed presents more accurate and reliable results, which is
proven by experiments. Hsiao [84] proposes an observer-based control scheme
for traction force, robust to variations in road conditions and uncertainties on
tire models.

Nilsson et al. [85] study the problem of estimating the position and
direction of a vehicle with a single camera since it is hardly dependent on image
quality. So, the authors propose an estimator which combines onboard vehicle
sensors and adjusted camera images, with a single-track model. Chen and
Wang [86] remark on the importance of tire-road friction coefficient estimation
for autonomous vehicle applications and present an observer which does not
depend on longitudinal motion information and is properly associated with
adaptive speed control. Singh et al. [87] remark that simpler stability control
performs well in many situations, but it is improved when a tire-road friction
estimator is associated with the control scheme. In this way, the authors
present a method, in which is used frequency response of tire vibrations in the
estimation algorithm. Hsu et al. [88] remark on the importance of knowledge
of physical limits of parameters used on vehicle control, such as tire slip angle
and maximum lateral force and propose a model-based estimation algorithm
that estimates them using information from the applied steering torque.

Du et al. [89] construct a side-slip estimator based on a fuzzy system
for lateral dynamics and the nonlinear Dugoff tire model, using measured yaw
rate and estimated states. Li et al. [90] use the same tire model to propose a
side-slip estimation algorithm robust to inaccurate tire parameters.
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Recent research in vehicle control point to the increased use of electric
in-wheel motors, which allows many control strategies and simpler configu-
rations of electric vehicles. These devices allow to reduce mass and simplify
transmission systems, which is favorable in electric and autonomous vehicles.
Zhao and Liu [91] present a four degree-of-freedom nonlinear dynamical model
of a four independent wheel electric vehicle, considering the measurements pro-
vided by modern sensors used on vehicles. An observer is associated with this
model to estimate vehicle velocity and roll angle, since these variables must be
controlled on stability control system. Feng et al. [92] present two estimation
algorithms based on moving horizon methods. The observer is applied on a
four wheels electric robotic platform under different friction conditions.

Jeon et al. [93] propose a real-time constrained Kalman filter algorithm
for estimation of the three tire forces on vehicle tires, namely, vertical,
longitudinal and lateral forces in mobile robots equipped with wheel encoders
and navigation sensors. Tire forces in the estimation process are modeled by
Magic Formula, an empirical model developed by Pacejka and Bakker [94].
Hong et al. [20] present an application of the Unscented Kalman Filter to
the estimation of inertial parameters of vehicles, which may be not accurately
determined in the design phase. Heidfeld et al. [21] applied the same algorithm
in a state and tire slip estimation for an electric vehicle with four independent
wheels.

Estimation algorithms are used also in path-tracking applications for
autonomous vehicles. Brembeck [23] remarks that state-estimators for au-
tonomous vehicles are even more challenging, since the complexity of models
and applications rises over time. In this way, he presents a vehicle state observer
to estimate position, yaw angle and their rates, with a focus on path following
and he discusses the balance between model complexity and estimator per-
formance. The author uses constrained versions of EKF and MHSE to better
approximate the results to real data. Jalali et al. [95] present a model predic-
tive control scheme for tracking yaw rate with small lateral velocity and tire
slips. The proposed method controls lateral velocity by adjusting the reference
yaw rate, which reduces the size of the model and computational complexity.
They also present an estimation algorithm by means of vehicle kinematics and
tire model.

The state estimation is possible only if the system is fully observable.
The condition of observability of a system is characterized by the possibility
of observing all state variables by means of the measurement variables, or yet,
if two different sets of states are related to two different sets of measured
variables [96]. The authors explore the observability of nonlinear systems,
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presenting two sufficient conditions to prove it. Katriniok et al. [97] present
an EKF estimation for longitudinal and lateral velocities and yaw rate. They
also present an approach for evaluating local observability online and a virtual
measurement variable for instants in which local observability is lost.

2.1.3
Friction Coefficient Estimation using MHSE

Vehicle state and parameter estimation has been the focus of much
research currently and in the past, as it enables better control [98]. Adequate
handling, in turn, is of great importance as it is related to safety and
performance. This fact is even more prominent in autonomous vehicles [16, 99],
as automation implies to aim toward an optimal operation. In [100], it is
remarked that safety issues are a challenge for autonomous vehicle integration
into roads, which makes important the surveillance of some variables which
are not measurable, as the sideslip and roll angle of vehicles.

In this context, we provide a brief state-of-the-art review, focusing on
the most recent content in the scope of vehicle state and parameter estimation
found in the specialized literature. As the mathematical abstractions vary
greatly concerning the type of maneuver, we try to elucidate the importance
of each application of estimation theory case by case.

In the context of vehicle control and autonomous navigation, the authors
of [18] present a comprehensive literature review about state estimation on
tires and vehicles, denoting the importance that this subject gained in the last
years research and remarking that LS and KF algorithms are most employed.
In [101], the authors compare many different estimation algorithms, using
EKF, NN, and Sliding Mode Observer, for different tire models, comparing
their advantages and disadvantages. We may note that both studies do not
present comparisons with MHSE, concluding that it is a novel approach to be
evaluated.

The researches about the EKF have addressed both its classical formula-
tion and adapted versions. The authors in [102] propose the use of a nonlinear
state-space model with augmented states to estimate translation velocity and
yaw rate together with vehicle inertial parameters based on a gyroscope and
an accelerometer. The goal of the paper was to estimate the vehicle state and
parameters in lateral motion, and thus longitudinal slip was not included in
the formulation. The observability of the resulting system was proven with
Lie derivatives and the augmented states formulation was validated with the
application of a standard EKF in a simulation environment with double lane
change and path following maneuvers.

DBD
PUC-Rio - Certificação Digital Nº 1912768/CA



Chapter 2. Related Works and Originality Claims 29

In [103], the authors comment that treating some vehicle model param-
eters as time-invariant may lead to sub-optimal control since they are not
exactly known. Therefore, they propose the application of EKF for simulta-
neous estimation of states and tire cornering stiffness and, then, remark that
other nonlinear approaches may achieve better results. The authors of [104] use
high fidelity simulations to tune and validate Kalman-based state estimation
methods used for evaluating inertial parameters and road profiles.

The authors of [105] present a sideslip angle estimator employing a
combination of NN and nonlinear KF approaches so that KF is fed by a
previous estimation obtained by the first one. The purpose of this arrangement
is to obtain also the uncertainty of the estimation, which is used for an
adaptive definition of the measurement covariance matrix. In [106], the authors
propose a sideslip angle estimator based on a kinematic model, using fused
information from an inertial measurement unit (IMU) and global navigation
satellite system (GNSS). In this case, an adaptive KF approach is used to
estimate errors and, then, reduce noise influence on the obtained data.

A constraint version of KF is presented in [81], which considers the
physical limitations of the parameters, demonstrating experimentally that it
improves the accuracy of the algorithm. A novel KF approach is presented in
[19], in which are associated EKF, RLS, and NN for tire-road friction coefficient
estimation. In [107], a robust framework is proposed, based on Unknown
Input Observer for tire-road friction estimation using indirect measurements
for application on vehicle control. The obtained results are, then, better than
those presented by the EKF estimator.

The authors in [108] remark on the challenges in the implementation of
lane guidance control for heavy vehicles, due to uncertainties. The authors
present an adaptive state and parameters estimator, developed from EKF
so that it is possible to estimate time-varying parameters. For the control
task, an H∞ regulator is proposed, ensuring robustness, even under external
disturbances.

The UKF has been also evaluated as an option for some kinds of nonlinear
systems, especially when the unscented transformations may be more useful
and applicable than the linearization. In [21], the authors present an UKF-
based adaptive algorithm for vehicle and tire states estimation, for application
on an electrical vehicle under variable road conditions. In their study, they
apply the concept of local observability for ensuring the effectiveness of the
observer. The authors of [109] evaluate in a simulation environment the
application of an EKF/UKF based solution for estimating vehicle velocities,
as well as uncertain parameters such as mass and friction using the TMeasy
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model [110].
Among the reviewed papers, the MHSE is the less explored and presents

a broad range of possible applications. The authors of [78] propose a control
strategy for tracked field robots with receding horizon estimation and control.
The estimation algorithm is used for estimating states and traction parameters,
and the receding horizon control is based on an adaptive system whose
model is time-varying. The model used is kinematic-based, and the estimated
parameters are related to the effective velocity and yaw rate. In [111], moving
horizon approaches are compared to UKF and the authors investigate the
advantages of each one in states estimation tasks for longitudinal and lateral
velocities, yaw rate, and yaw angle of a vehicle.

Some other techniques are also the focus of research. In [112], the authors
propose a friction estimator based on load sensing bearing measurements
and employing a combined slip tire model. The authors of [113] present a
nonlinear reduced observer for estimation of road conditions and side-slip,
which is applied to traction control and validated by simulations. Some studies
also demonstrate the effective use of Fuzzy Systems [114] and ANN [115] for
estimation of road conditions and vehicle states.

The authors of [116] present an algorithm for friction coefficient estima-
tion based on tire efforts and kinematics measurements, which is experimen-
tally validated. Its measured data is freely available so that other algorithms
may be evaluated.

Based on the literature review, we may note that MHSE is not broadly
studied in augmented states approaches for nonlinear estimation [18, 23, 101],
with a few exceptions, such as [23, 111], that employ this approach for
estimating states and [78] that use a kinematic model for estimation of the
parameters that indicate effective velocity and yaw rate. So, any of them are
focused on friction coefficient estimation.

Among the proposed estimation algorithms, EKF is the most studied for
nonlinear systems [19, 102, 103, 108]. Meantime, as it is based on derivatives,
we note that its application on friction effort systems may have its performance
degraded since these systems are characterized by discontinuities on state
equations and hence their Jacobians which should be evaluated at each state
trajectory evolution on time.

The use of unscented transformations rather than Jacobians on UKF is
an attempt of avoiding such discontinuities, but the literature review denotes
that this approach is less explored on states and parameters estimation for
vehicle control. The UKF application presented on [21] is limited to state
estimation and the authors of [109] use a dual Kalman Filter framework for
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states and friction coefficient estimation, indicating that its performance may
be improved. We may also observe in the previous subsection that moving-
horizon approaches are studied in a few researches, but it is also demonstrated
its flexibility and the broad range of possible applications, which may lead us
to understand that it may achieve good results for the estimation of vehicle
dynamics states.

2.1.4
Receding-horizon Strategies for State of Charge Estimation of Lithium-ion
Batteries

Due to growing interest in EV, SOC estimation on lithium-ion batteries
has been the focus of many recent researches, aiming at higher effectiveness
of the BMS. This is of great importance to improve the autonomy of EVs
and the design of traction control laws with optimized energy consumption.
Many papers present an equivalent Thévenin’s model as a suitable solution for
first principles modeling, since it has a simple structure and low complexity
[6]. Despite its simplicity, ECM is proved to be an efficient approximation
of many kinds of batteries [117], but it requires the identification of model
parameters, in addition to SOC estimation, which may be performed offline or
simultaneously.

The authors of [118] use a physics-based battery model, whose parameters
must be calibrated before the application of an adaptive Cubature Kalman
Filter (CKF) for SOC estimation. In [34] a lumped parameters model of the
battery is proposed, considering the influence of ambient temperature, which
can improve EKF based SOC estimation when compared to Thévenin’s model.
In [119] a fractional-order ECM is proposed for lithium-ion batteries and the
authors demonstrate that it can improve SOC estimation. These works remark
that a reliable mathematical model is important to ensure the overall accuracy
of a BMS. To improve the reliability, the authors of [120] propose a modeling of
the degradation of Li-ion batteries, which is evaluated by experimental tests.

Machine learning techniques have been also evaluated as solutions for
black-box modeling of batteries, as presented in [121], whose research demon-
strates the effectiveness of different machine learning models for both electrical
and thermal effects on Li-ion batteries. The thermal effects on batteries are
also the focus of the modeling presented in [122], which estimates and evaluates
the heat dissipation of batteries.

The estimation of SOC is evaluated in some researches, which comprise
improved versions of classical methods, namely LS [123], EKF [34], and
UKF [124]. Specifically about EKF, some published papers focus on modified
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versions, in order to overcome its shortcomings, such as tedious trial and error
calibration and fine tune required by the method, by means of approaches
with adaptive features [36, 37, 41], reduced parameters [38], fractional-order
approaches [35, 40] or combined with other methods, such as UKF [125], CKF
[126] and Support Vector Machines (SVM) [127].

Many researches employ KF-based improvements for state estimation
combined with other algorithms for model parameters identification, such
as RLS [25, 28], Particle Swarm Optimization (PSO) [29, 30], Lagrange
multipliers [31] and Genetic Algorithms (GA) [32]. Another approach employed
is the augmented states formulation, which allows simultaneous estimation of
states and parameters. In this case, the identifiability of the parameters is
defined by an observability analysis of the augmented system [128]. Not fully
observable augmented systems may present unreliable results for parameters
estimation, which is avoided with the methodology proposed by the authors
of [129].

The authors of [130] propose an intelligent adaptive EKF approach
for SOC estimation as an improved version of adaptive EKF, and both are
validated employing freely available experimental data [131], which is also
used in this paper. Parameter estimation is online, performed by a forgetting
factor RLS. The authors demonstrated that the intelligent approach improves
estimation accuracy, reducing considerably the errors without significantly
increasing the computational efforts.

Other algorithms are also evaluated for SOC estimation. An adaptive
fuzzy system is proposed in [132] for SOC estimation in series-connected
battery packs. According to the authors, the fuzzy system is designed for
improving accuracy even under cell inconsistencies, which is proved to be
effective by simulation and experimental analysis.

A machine learning approach is proposed in [133], in which the authors
use a linear regression model and Gaussian process regression. They conclude
that the method may be used in BMS, since the presented error is acceptable.
In [134], it is proposed a weighted LS-SVM to State of Health (SOH) estimation
on lithium-ion batteries, remarking that this task is a challenge on retired ones,
in which dynamics is highly nonlinear.

Many other observer designs are based on Particle Filter, such as pro-
posed in [135]. The same algorithm is the base of the research presented in
[136], which proposes an adaptive version for simultaneous parameters and
states estimation.

A robust estimation is proposed in [137] to solve ill-conditioned observ-
ability points, avoiding unreliable SOC estimation. The authors of [138] present
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a scheme for robust estimation, which is designed to consider model uncertain-
ties and time-varying parameters. A robust algorithm is also proposed in [139],
applying H∞ filter with bias compensation.

The interest in NN for SOC estimation increased significantly in recent
years, as we review next. The authors of [140] employ NN in two different tasks
for SOC estimation of lithium-ion batteries. The first one has the purpose
of filtering measured data, extracting the main features and reducing noise.
These data are used as inputs for the latter one, which performs the SOC
estimation. In [141], the authors present a Recursive Neural Network (RNN) for
modeling battery dynamics under varying temperatures and SOC estimation,
using voltage, current and temperature measures. Results demonstrate that
the algorithm may estimate SOC in different temperatures and even in
temperatures in which the NN was not trained.

A bidirectional Long Short Term Memory (LSTM) network is proposed
in [142], so that past and future battery information are considered, improv-
ing accuracy and enabling the characterization of nonlinear dynamics of the
battery. A similar structure of a deep NN is proposed in [143], which is ex-
perimentally evaluated, demonstrating that it is accurate at different ambient
temperatures.

In [144], the authors propose a framework of estimation, in which an
approximate estimation is performed using a LSTM in the first step and refined
in a latter one that employs an adaptive H∞ filter, improving accuracy. The
authors of [145] propose wavelet NN, optimized by the Levenberg-Marquardt
algorithm and PSO, for SOC estimation, which is proved to have good
performance, in comparison with EKF and a back-propagation NN.

The authors in [146] propose the application of a Nonlinear Autoregres-
sive with Exogenous Inputs (NARX) RNN with a moving window to establish
an adequate model and to perform state estimation. The authors remark that
the moving window allows the use of a small amount of data, accelerating the
NN training process and avoiding the loss of information needed for estimation.

Recently, receding-horizon estimation algorithms have been evaluated
for SOC estimation. In [147] the authors propose a moving-horizon approach
for SOC and input current estimation, through a constrained optimization
problem. This approach is useful even when there is no current measure
available, but it requires the model parameters to be defined beforehand.
A noise adaptive Moving-Horizon Estimation (MHE) algorithm is proposed
by the authors of [148] to improve efficiency even under unknown noisy
measurements. In this paper, model parameters are defined by a polynomial
fitting, in function of SOC at each sample.
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The authors of [149] present a combination of auto-regressive LSTM
network and MHE for SOC estimation, so that the results of each one are
combined to obtain the desired estimation. In the algorithm proposed, model
parameters are defined by a two-dimensional polynomial fitting, which has as
arguments the SOC and the input current.

The literature review allows us to observe that different versions of KF
and LS are broadly explored on BMS tasks [34, 123, 124, 130, 150, 151].
Adapted versions of EKF are proposed by many researchers, in order to bypass
the main disadvantages of this algorithm, such as calibration difficulties and
variable efficiency according to state variables [35–38, 40, 41, 125–127].

Concerning MHSE, we may note that it is not broadly studied for SOC
estimation with augmented states formulation. Very few papers have explored
this technique [147–149], but not for simultaneous state and parameters
estimation. Additionally, none of the aforementioned papers has explored the
approximate version of the MHSE using the NN proposed in [22, 42], which
embedded solutions for BMS may greatly benefit. Results indicate that, due
to its predictive power and robustness, MHSE may achieve better results
than its Kalman-based counterparts even for a system with augmented states
formulation [22], which makes evident the need of testing receding-horizon
solutions for SOC estimation.

Recent developments on NN methods indicate that they may be suc-
cessfully applied to SOC estimation, due to their robustness and adaptabil-
ity, which is evaluated by some researchers for black-box state estimation
[140, 141, 146]. We herein adopt a fundamentally different approach, which
takes advantage of the physical model of the system. As the physical meaning
of the variables is preserved by the model-based state estimation structure of
MHSE and this method is presented as accurate and robust [22], we evaluate
the possibility of using MHSE results for training an ANN which defines faster
the SOC using the information available on the receding-horizon defined, that
is defined as NNMHE. In summary, this methodology associates the accuracy
and interpretability of the results of MHSE, with the reduced computational
cost that NNMHE may demand [42]. This machine learning approach arises as
relevant, since reliable measured data of SOC for training the NN are hardly
obtained and not always available. Besides that, ANN can be conveniently
embedded on hardware [152], enabling its online application.
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2.1.5
Hierarchical Framework for IWMD-EV Control

Many recent researches propose the use of MPC for vehicle control. The
authors of [153] employ MPC on adaptive cruise control for vehicles, com-
paring its performance with a Linear Quadratic Regulator (LQR) controller,
concluding that the first one performs well even when in unstable situations.
In [154], the researchers propose a MPC for longitudinal control of a vehicle
with ICE, in which the weights inside the cost function are defined through a
fuzzy inference system, in order to improve performance and fuel consumption
on road slopes. In comparison to a controller that keeps velocity constant, the
proposed MPC presents lower fuel consumption and emissions.

The authors of [155] apply a linear MPC algorithm [155] for autonomous
navigation at low speeds, such as crossing obstacles with known profiles.
In [156], the authors propose a novel modeling framework and a hybrid
MPC strategy for velocity regulation of an intelligent vehicle with ICE and
automatic transmission. The control can define the longitudinal working modes
(acceleration or braking) and the continuous control inputs for throttle opening
and braking pressure.

The authors of [157] remark that the wheel slip control and estimation
is a critical issue in driving control of EV, improving power consumption and
safety, as the loss of traction is prevented. So, the authors present a sliding
mode based method for control and estimation of wheel slip of an electric
tractor, using a Burckhardt tire model. In [158] a novel strategy for EV control
is proposed, that integrates state estimation performed with a Particle Filter
and a NMPC for driving and handling of IWMD-EV.

The authors of [159] present a MPC for path tracking and stability control
for highly automated vehicles, with a linearized model, in which is supposed
that tires operate next to friction limits. In [160], a path tracking NMPC is
proposed. The 2-DOF model supposes that longitudinal slip and sideslip angle
are small enough that tire forces are defined by linear formulations.

In [161], the authors apply MPC for stability control, with a combined
tire model LuGre and conclude that this model is more accurate than the
pure slip models. The authors of [162] use MPC and NMPC for braking in
straight paths with variable friction. Due to this uncertainty, an estimation
algorithm for longitudinal velocity is developed, based on wheel speed and
linear accelerations.

The authors of [163] evaluate fidelity levels and execution time of many
dynamical models of autonomous vehicles for a MPC application for obstacle
avoidance at high speeds. The results are applied on a nonlinear MPC for-
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mulation in unstructured environments, ensuring safe and smooth operations
[164]. In this research, safety is defined as the constant contact between tire
and soil.

A controller for an EV is presented in [44], with many objectives, such
as slip control, lateral stability, handling and rollover prevention. The authors
use a MPC algorithm, which defines the torque on each independent wheel.
The authors of [45] propose a nonlinear MPC for slip control, considering
safety conditions as constraints of the cost function, which is employed on an
IWMD-EV model with four independent wheels. A path tracking MPC-based
is proposed on [46], in which vehicle shape and feasible road region are used as
constraints of the optimization problem. In [47], a MPC algorithm, associated
with a 2 DOF model, is proposed for path tracking and lateral stabilization,
considering stable handling and safe navigation as constraints.

Collision avoidance and stability in highways applications are also possi-
ble to be reached by MPC algorithms, such validated by hardware-in-the-loop
in [48]. With the same objective, MPC is used in [165], for decision making
and control, with a combined tire model and controlling the vehicle by means
of active steering and independent wheels.

Nonetheless, as MPC is based on an optimization problem, its application
in complex systems, as vehicle controls, may be compromised due to the high
processing times required. Aiming to address this issue, some researches have
proposed as a solution the adoption of hierarchical frameworks, in which the
control task is divided into two or more layers, so that the output of one layer
is used as the reference for the subsequent one.

In this context, the authors of [166] present a hierarchical strategy for
longitudinal control of a vehicle with ICE, using a linear tire model. They
propose a Lyapunov function on the outer layer, which defines the wheel
torque reference, while the inner one defines the throttle opening, through
a PI controller.

In [167], the authors propose a three-layer strategy for longitudinal con-
trol of an automated vehicle with ICE, especially for traveling on low friction
roads. Then, the purpose of the control is to ensure that the longitudinal slip
is kept in stable region of the traction force curve.

The authors of [168] propose a three-layer control with compensators on
the upper and lower layers and an optimization problem on the middle one.
The purpose of this layer is to define the wheel angular velocity that minimizes
the power required on the motor. The model employs a linearized approach of
longitudinal force.

Specifically associating with MPC, the authors of [169] propose a hierar-
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chical strategy for coordinating braking performance and steering in IWMD-
EV with two layers. In each time step, in the outer layer, references longitudinal
and lateral forces and yaw moment are defined by a NMPC based on a PSO
algorithm. So, the inner layer defines the optimal torque allocation and brake
actuator regulation, in order to achieve those efforts, ensuring stability and
energy recovery.

In [49], the authors propose a framework for path tracking of intermediate
or advanced automated vehicles, in highway situations. In the framework, the
path planning layer defines the optimal trajectory and the tracking layer defines
the best control variables by a linearized time-varying MPC.

The authors of [50] propose a control strategy with two NMPC layers,
which define, respectively, kinematics and dynamics conditions for path track-
ing in handling limits conditions. In [170] a MPC structure is proposed for
yaw stability in a 8-DOF model of an IWMD-EV, by means of motor torque
distribution and active steering on the front axle.

We may observe in the literature review, that MPC has been used for
EV path tracking tasks [44, 47, 158–160]. Meanwhile, due to the complexity
of vehicle systems, the use of MPC for the determination of torque inputs of
IWMD-EV may harm the processing time, especially due to nonlinearities
and discontinuities on tire models. Aiming to improve the performance of
autonomous EV on path tracking, the use of hierarchical frameworks is
evaluated, in which the control task is divided into many layers, so that the
output of one is the input or the reference of the subsequent [49, 50, 169, 170].

2.2
Contributions

Based on the critical analysis of the literature, presented at the end of
each subsection of the previous section, we may establish the contributions of
this thesis, which may be divided into five groups, as follows:

– Grey-box identification of time invariant parameters (presented in Chap-
ter 6):

– Present a grey-box identification methodology on an enhanced
complexity analytical model of a landing gear, aiming to be able
to precisely identify parameters on a real drop test data;

– Evaluate batch and recursive approaches for time-invariant param-
eters of a multi-body system.

This chapter has been published in:
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LOPES, E. D. R.; AYALA, H. V. H. Nonlinear grey-box identifica-
tion of a landing gear based on drop test data. In: CONGRESSO
BRASILEIRO DE AUTOMÁTICA-CBA, 2020.

– State Estimation of Vehicle and Tire Dynamics (presented in Chapter
7):

– Present a comparative analysis between EKF, UKF and MHSE al-
gorithms for estimation of longitudinal slip in ground vehicle control
applications, which is applicable to other systems characterized by
nonlinear and discontinuity efforts;

– Demonstrate that MHSE presents superior results, even under
measurement noise, since it does not depend on the linearization
processes of the system.

This chapter has been published in:

LOPES, E. D. R.; RODRIGUES, G.S.; AYALA, H. V. H. Comparison
of Nonlinear Receding-Horizon and Extended Kalman Filter
Strategies for Ground Vehicles Longitudinal Slip Estimation.
In: CONGRESSO BRASILEIRO DE AUTOMÁTICA-CBA, 2020.

– Friction coefficient estimation using MHSE (presented in Chapter 8):

– Propose nonlinear observers for vehicle dynamics and control, an-
alyzing the particularities of their application for friction efforts
systems;

– Evaluate EKF, UKF and MHSE performance for friction coeffi-
cient estimation, with augmented states, considering that this phe-
nomenon is present on nonlinear systems and that it is characterized
by discontinuities on Jacobians and derivatives;

– Present MHSE as a suitable nonlinear observer for friction coeffi-
cient estimation, commenting about its advantages and disadvan-
tages and demonstrating its robustness and capacity for correctly
estimating states and parameters even under noisy measures.

This chapter has been submitted for review:

LOPES, E. D. R.; RODRIGUES, G.S.; AYALA, H. V. H. Tire-
road Friction Coefficient Estimation Using Nonlinear Receding-
Horizon and Kalman Filter Strategies. Under Review, 2022.

– Receding-horizon strategies for state of charge estimation of lithium-ion
batteries (presented in Chapter 9):
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– Propose the original application of MHSE for simultaneous SOC
and model parameters estimation, which is not explored in previ-
ous papers, comparing their results with the classical formulation
of EKF showing overall better results for the receding-horizon ap-
proaches;

– Prove that the augmented states and parameters are not observable
in the original Kalman definition, while they become observable by
increasing the window size in the moving-horizon approach. This is
of great importance as it enables asymptotic stability of the filter
without adding more sensors and thus avoiding costs by improving
the estimation algorithm;

– Evaluate an augmented states formulation for state-space equations
used on proposed estimators, verifying influences of the higher
number of variables on estimation. This shows that it is possible
to perform accurate and simultaneous estimation, with reduced
complexity of the algorithms;

– Evaluate the effectiveness of the use of states observed by MHSE on
the training of the NNMHE, that can estimate SOC accurately, in
a reduced time, using recent information measured on the batteries.
This receding-horizon approach is validated with experimental data.

This chapter has been submitted for review:

LOPES, E. D. R.; AYALA, H. V. H. Nonlinear Receding-horizon
Filter Approximation with Neural Networks for Fast State of
Charge Estimation of Lithium-Ion Batteries. Under Review, 2022.

– Hierarchical Framework for IWMD-EV Control (presented in Chapter
10):

– Propose a novel hierarchical framework for driving and path-
tracking control of an IWMD-EV, using a NMPC algorithm for
defining reference forces on the vehicle body;

– Demonstrate that the proposed control framework is efficient about
safety and driveability, ensuring that the tire longitudinal slip is
kept into the stable region of the tire-road friction curve;

– Demonstrate that the hierarchical framework reduces considerably
the computational effort;

– Evaluate the use of different sample times for the plant and the
NMPC algorithm, enlarging the prediction horizon in time and
reducing processing times.
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This chapter has been submitted for review:

LOPES, E. D. R.; AYALA, H. V. H. Hierarchical Nonlinear Model
Predictive Control for Path Tracking of In-Wheel Motor Drive
Electric Vehicles. Under Review, 2022.
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3
Dynamic Models

In this chapter, the dynamic models used on the contributions are
presented. Firstly, the mathematical models for tire efforts on planar motion
are described, which are the forces and moments produced during the traction,
braking and steering processes. Subsequently, a planar dynamic model of a
vehicle is presented, derived from the Newton-Euler equations and the efforts
developed on tires. It is used to obtain the quarter-car and the single-track
models, which are presented in the last sections.

3.1
Tire Efforts on Planar Vehicle Dynamics

The tires are the vehicular components in contact with the road, and
they have as functions supporting the weight of the vehicle, dampening road
irregularities and interacting with the road, which produces the main forces
and moments that act on vehicle motion, such as longitudinal and lateral forces
and yaw moment.

The longitudinal force developed on wheels during traction and braking
is defined as proportional to normal load, according to a friction coefficient µx,
which depends on the longitudinal slip λ [171].

Fxw = µxFzw (3-1)

λ = ωr − vwx

vwx

= ωr

vwx

− 1 (3-2)

We may note that during acceleration, slip is positive, and during
braking, it is negative and equation (3-2) demonstrate that λ must be on
[−1,∞[. There are many formulations for the relationship between µx and λ,
as the Julien Theory [172], the Burckhardt model [173] and the Magic Formula,
proposed by Pacejka [174]. All of them depend on many parameters, which are
empirically obtained. The last one has the advantage of being continuous in the
whole domain of slip, which does not happen in the others, reducing the elapsed
time of simulations and estimation processes. Besides that, other models are
applicable only to longitudinal forces, while Pacejka model may be applied to
all tire forces and moments. So, according to the Magic Formula model, µ may
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be written as:

µx(λ) = Ax sin(Bx arctan(Cxλ
∗ −Dx(Cxλ

∗ − arctan(Cxλ
∗)))) + SVx (3-3)

In which:

λ∗ = λ+ SHx (3-4)
The parameters Ax, Bx, Cx and Dx depends on road conditions on

which the vehicle moves. The shift parameters SHx and SVx are used with
experimental data, to include in the results the effects of rolling resistance and
energy lost on the longitudinal force.

The lateral forces may also be defined by another version of Magic
Formula. The frames and angles used on tire dynamics and equations below
are presented in Figure 3.1, for the i-th tire of the vehicle. In this case, the
argument for Magic Formula equation is the sideslip angle (α), defined by Eq
(3-5), in which βi is the attack angle (Eq. (3-6)) of the wheel, δi is the steering
angle and δϕ is the steering angle due to rolling angle ϕ [171].

αi = βi − δi − δϕ (3-5)

βi = arctan(vwy

vwx

) (3-6)

x

y

Figure 3.1: Tire frame and angles.

In this case, the lateral force may be calculated by:

Fyw = µyFzw (3-7)
In which, µy may be defined with a similar magic formula model, such

as presented on Eq. (3-3). For small values of the sideslip angle and neglecting
Camber angle and roll angle (planar motion), the lateral force, written on the
tire frame, may be defined by Eq. (3-8).

Fyw = −Cαα = −C∗
αFzwα (3-8)
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The parameter Cα is called cornering stiffness and its dimensionless value
C∗

α may be calculated from µy:

C∗
α = − lim

α→0

∂µy

∂α
(3-9)

Analogously to longitudinal force formulation, we adopt horizontal and
vertical shifts to lateral force, in order to fit properly the experimental data.
In this case, these shifts are necessary to include ply steer and tire conicity
effects. So, a more complete model for the lateral force may be defined as:

Fyw = −(C∗
α(α + SHy) + SVy)Fzw (3-10)

The main moments we consider acting on tires in planar dynamics models
are the overturning and the aligning ones. The first one (Myw) is produced
by the rolling resistance force, which is due to non-uniform normal stress
distribution on tireprints and it is usually calculated as proportional to the
vertical load (equation (3-11)), according to rolling resistance coefficient fR.

Myw = fRrFzw (3-11)
The aligning moment is due to the non-uniform distribution of lateral

force and its calculated by means of the distance ay between the centerline of
the tireprint and the virtual point in which this force is applied, that is:

Mzw = ayFyw (3-12)
So, noting that δi is the rotation angle of the tire around the axle zw and

ω its angular speed around yw, the equations of motion of the wheels may be
defined by:

δ̈ = Tsteer −Mzw

Iwz

(3-13)

ω̇ = Ttrac −Myw − rFxw

Iwy

(3-14)

3.2
Planar Vehicle Dynamics

The forces acting on a vehicle and its generalized coordinates are easier
understood on vehicle frame (body frame) B(x, y) than on fixed frame F (X, Y )
(details in Figure 3.2). Because this, the equations of motion are better defined
by Newton-Euler equations:

v̇
ω̇

 = I−1

 F − ω × Iv

M − ω × Iω

 (3-15)
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xy

X

Y Desired 

path

Figure 3.2: IWMD-EV dynamics.

Besides the tire forces transmitted to the vehicle chassis, there is acting
on its CG the aerodynamic resistance Raer, that we assume proportional to
the square of velocity norm by caer. For passenger vehicles traveling on level
roads, we may neglect the vertical displacement of the chassis and pitch and
roll rotations, so that the equations of motion are written as:


v̇x

v̇y

ψ̈

 =


m 0 0
0 m 0
0 0 Iz


−1 

Fx + ψ̇mvy −Raerx

Fy − ψ̇mvx −Raery

Mz

 (3-16)


v̇x

v̇y

ψ̈

 =


Fx −Raerx +mψ̇vy)/m
(Fy −Raery −mψ̇vx)/m

Mz/Iz

 (3-17)

In equation (3-17), the forces Fx and Fy and moment Mz transmitted to
the chassis by the nt tires considered on the model are defined as:

Fx =
nt∑

i=1
Fxwi

cos δi − Fywi
sin δi (3-18)

Fy =
nt∑

i=1
Fxwi

sin δi + Fywi
cos δi (3-19)

Mz =
nt∑

i=1
Mzwi

+ r̃iTz(δi)


Fxwi

Fywi

0

 (3-20)
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where Tz indicates a rotation matrix (equation (3-21)), ri is the position of
each wheel in relation to vehicle center of gravity and r̃ an anti-symmetric
matrix which may calculate a cross product (Equation (3-22)).

Tz(δi) =


cos δi − sin δi 0
sin δi cos δi 0

0 0 1

 (3-21)

r̃ =


0 −rz ry

rz 0 −rx

−ry rx 0

 (3-22)

3.3
Quarter-car Model - Longitudinal Dynamics

A quarter-car model may be effectively used for the study of nonlinear
estimation of longitudinal slip and velocity reference tracking. In this model,
the vehicle is understood as a concentrated mass (with mass m) over a single
wheel (with the moment of inertia Iwy), and there are no effects related
to vertical or lateral dynamics. Are considered also the rolling resistance
momentum and aerodynamic resistance as presented in Figure 3.3.

Fx

m

Raer

��� , r

T

MRol

Figure 3.3: Quarter-car Model.

As only the longitudinal displacement DOF is considered and treating
the c = caer/m, the dynamical model may be obtained from (3-14) and (3-17)
with the proper simplifications:

v̇x = µx(λ)g − cv2
x (3-23)

ω̇ = T

Iwy

− (µx(λ) + fR)mgr
Iwy

(3-24)

The friction coefficient µx depends on the longitudinal slip λ, which may
be define, in this case, as:
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Figure 3.4: Single-Track Model.

λ = ωr − vx

vx

= ωr

vx

− 1 (3-25)

If we define that an electric in-wheel motor is responsible for traction
and braking of the vehicle, the input torque T may be written as proportional
to electrical current according to the torque constant Kt.

3.4
Single-Track Model - Coupled Longitudinal and Lateral Dynamics

As the full vehicle longitudinal and lateral dynamic model is complex,
the evaluation of MPC application on vehicles may be more efficient in reduced
systems, such as the bicycle one, also known as single-track model. This model
treats the vehicle as a body with negligible width, with only one wheel on each
axle, such as demonstrated in Figure 3.4.

As we study and research MPC applications for IWMD-EV, in the model
we consider that front and rear wheels are independently controlled for traction
and steering. The equations of motion of the vehicle may be obtained from Eq.
(3-17), but as the single-track model considers single wheels on each axle, the
positions of each wheel related to the vehicle center of gravity (CG) are only
the distances between the CG and, respectively, the front and rear axles.

From the rigid body equation of the vehicle and dynamic equations of
each wheel (Eqs. (3-13) and (3-14)), we may obtain the state-space model of
the single-track model, as described below.

x =
[
vx vy ωz ω1 δ1 δ̇1 ω2 δ2 δ̇2 X Y ψ

]T
(3-26)
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u =
[
Tt1 Ts1 Tt2 Ts2

]T
(3-27)

ẋ = f(x,u) =



(Fx −Raerx +mωzvy)/m
(Fy −Raery −mωzvx)/m

Mz/Iz

(Tt1 −Myw1
− rFxw1

)/Iwy

δ̇1

(Ts1 −Mzw1
)/Iwz

(Tt2 −Myw2
− rFxw2

)/Iwy

δ̇2

(Ts2 −Mzw2
)/Iwz

vx cosψ − vy sinψ
vx sinψ + vy cosψ

ωz



(3-28)

Note that the input of the system may also be defined as the electrical
currents on traction and steering motors, since the torques are proportional to
them according to their torque constant. Besides that, the terms Fx, Fy and
My are defined as described in Eqs. (3-18), (3-19) and (3-20), with nt = 2.

3.5
Equivalent Battery Model

Based on Thévenin’s theorem [130], the battery may be modeled by a
simplified ECM, with an open-circuit voltage (OCV) as a source UOC , in series
with a resistor Rs and a parallel-connected RC network, composed by a resistor
Rp and a capacitor Cp. It is a lumped-parameters model commonly used for
battery modeling for SOC estimation [6, 130]. The scheme of the equivalent
circuit is presented in Fig. 3.5.

+

-

+

-

RS

RP

CP

UOC

Ut

i

Figure 3.5: Equivalent circuit model of lithium-ion battery, based on
Thévenin’s theorem.
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Based on Kirchhoff laws, the continuous-time equations of the circuit
given in Fig. 3.5 are

U̇p = i

Cp

− Up

RpCp

(3-29)

Ut = UOC − Up − iRs (3-30)
where Up is the voltage on RC network, Ut is the measured voltage on battery
terminals, and i is the electrical current, which is the system input. Note that a
positive current indicates a discharging phase, while a negative one a charging
phase.

The SOC time-derivative is defined by equation (3-31) [30, 32], which
is applied on Coulomb Counting method for SOC definition. Despite being
used in most of the researches, the accuracy of this equation may be severally
affected by some factors, such as ambient temperature, discharge current and
the history and cycle life of the battery [175].

˙SOC = − ηi

Cn

(3-31)

where Cn is the nominal capacity of the battery and η is the efficiency of
the charging and discharging process. Note that the SOC is related to the
current state. According to the equation, the SOC decreases while the current
increases.

The UOC depends on SOC and this relation may be established by means
of a low current discharge test. The reason to use a low current discharge test
is that the effects of the dynamics of other components are minimized and the
open-circuit voltage is approximately equal to the terminal voltage [176]. In
this ECM, we adopt a polynomial fit to relate UOC and SOC, as in [130]. To
this end let

UOC = p(SOC) =
np∑
i=0

KiSOC
i (3-32)

where np is the order of the polynomial of coefficients Ki, i ∈ [0, np].
Applying a discretization with sampling time Ts on equations (3-29),

(3-30) and (3-31) [17], we may define the discrete-time equations for the
equivalent circuit model:

Up,k = Up,k−1exp
(

− Ts

CpRp

)
+ ik−1Rp

[
1 − exp

(
− Ts

CpRp

)]
(3-33)

SOCk = SOCk−1 − ηik−1Ts

Cn

(3-34)

Ut,k = UOC,k − Up,k − ikRs (3-35)
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3.6
Landing Gear System

The landing gear is modeled, in this work, as a planar mechanism, with
concentrated inertia. The stiffness and damping of its structure and suspension
system are considered a rotational spring and damper, which represents the
stiffness and damping of the structure. In the system, there are three bodies:
a concentrated mass representing the airplane with coordinates (x, z), a bar
with length L representing the structure of the landing gear, with coordinates
[xb, zb, θ], and the wheel with coordinates [xw, zw, ϕ], radius R, and an applied
braking torque T , as shown in Figure 3.6.

m

mw , J

mb , Ib, L

b

k

Fb

h

xw

zw

xb

zb

x

z

RT

Figure 3.6: Landing gear model.

We use the Lagrange formulation in order to obtain the dynamic equa-
tions of motion for the landing gear. To this end, the kinematic relations be-
tween the generalized coordinators are presented as

ẋb = ẋ− L

2 θ̇ cos θ (3-36a)

żb = ż + L

2 θ̇ sin θ (3-36b)

ẋw = ẋ− Lθ̇ cos θ (3-36c)
żw = ż + Lθ̇ sin θ (3-36d)

We may rewrite some parameters, for simplifying equations, as follows:

M1 = m+mb +mw (3-37)

M2 = Ib + (mb

4 +mw)L2 (3-38)
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M3 = (mb + 2mw)L (3-39)
So, the kinetic energy Ek and potential energy Ep of the system may be

described as:

Ek = 1
2M1(x2 + z2) + 1

2M2θ̇
2 + 1

2M3(−ẋθ̇ cos θ + żθ̇ sin θ) + 1
2Jϕ̇

2 (3-40)

Ep = M1gz −M3g cos θ −mwgh+ k

2(θ − θ0)2 (3-41)
The Lagrange Equation is defined at Eq. (3-42), where qi indicates each

generalized coordinate and Qi the external forces or moments related to qi.

d

dt

∂

∂q̇i

(Ek − Ep) − ∂

∂qi

(Ek − Ep) = Qi (3-42)

Applying the Lagrange Equation for each generalized coordinate, namely
x, z, θ and ϕ, it is possible to obtain the system dynamic equations.

M1ẍ−M3θ̈ cos θ +M3θ̇
2 sin θ = 0 (3-43a)

M1z̈ +M3θ̈ sin θ +M3θ̇
2 cos θ +M1g = 0 (3-43b)

−M3ẍ cos θ +M3z̈ sin θ +M2θ̈ +
+M3g sin θ + k(θ − θ0) + bθ̇ = FzL sin θ + FbL cos θ (3-43c)

Jϕ̈+ cϕ̇ = FbR − T (3-43d)

The braking force is not considered in the first equation, because the
prototype on test is confined. So, this force is balanced by the kinematic con-
straint imposed by the apparatus. The braking force is considered proportional
to the vertical load, which is due to the elastic condition of the tire. So, it may
be written as:

The parameter µ depends on the slip (λ), which relates the wheel hub
velocity and the wheel angular velocity as

λ = ẋw − ϕ̇R

ẋw

(3-44)

There are many models relating the coefficient µ and the slip λ, among
which, one of the most widespread on braking systems is the Burckhardt model,
described in [177].

µ(λ) = ϑ1(1 − e−λϑ2) − λϑ3 (3-45)
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4
Estimation Methods

This chapter deals with the estimation methods employed on the contri-
butions presented in Part III. Except for the first one, which treats of time-
invariant parameters estimation, all methods are described for discrete-time
nonlinear state-space model. If only the continuous-time model is available, it
must be discretized by any analytic or numeric integration. In this thesis, the
discretization is usually performed with a 4th-order Runge-Kutta algorithm.

Generally, a discrete-time nonlinear state space model may be defined
as: x(k + 1) = f(x(k), u(k))

z(k + 1) = h(x(k + 1), u(k + 1)) + ξn

(4-1)

where the index k denotes discrete-time dependence, x(k) is the state vector,
u(k) is the input vector of the system, and z(k) is the output vector, that is, the
measured variables which are functions of the states and inputs. Functions f(·)
and h(·) are called state and measurement equations, respectively, and are in
general nonlinear mappings. They relate states and inputs to state transitions
and measurements, respectively.

4.1
Grey-box Time Invariant Parameters Estimation Algorithm

The grey-box identification has as an objective the determination of
unknown parameters, through measured or estimated states. When the ne

dynamic equations of a multi-body system are known, it is possible to identify
np linearly independent parameters that allow rewriting the equations as
matrix multiplication, for each sample j:

φ(j)Θ = f(j) (4-2)
where Θ ∈ Rnp is a vector with the smallest set of linear independent
parameters of the model, φ(j) ∈ Rne×np is a matrix with only known terms,
as measured or estimated positions, velocities and accelerations. The vector
f(j) ∈ Rne is composed of independent terms, which include external forces
and moments and others that are not related to unknown parameters.
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Since the measured or estimated states may be affected by noise, it is
important that Φ and F are as large as possible, considering all points available.
So, concatenating the matrix equations, the system may be described as

φ(1)
...

φ(j)
...

φ(N)


Θ =



f(1)
...

f(j)
...

f(N)


(4-3)

Generally, the Equation (4-3) may be written as

ΦΘ = F (4-4)
which may be then treated effectively. The identification problem resembles
obtaining the vector of parameters Θ with measurements made in Φ and F .
For the grey-box identification, many methods may be used for estimating
the vector of parameters Θ. The simplest is the Batch Least Squares (LS)
algorithm, or the Penrose-Moore pseudo-inverse. So, the estimated vector is:

Θ̂ = (ΦT Φ)−1ΦTF (4-5)
The recursive approach of Least Squares may already be used in this

grey-box identification, with suitable precision. With some modifications, this
method converges to the Kalman Filter (KF) for parameter estimation, which
may be employed for online or offline identification [178]. This algorithm is
recursive and described in these equations, for each sample j

ϵ(j) = F (j) − F̂ (j) = F (j) − Φ(j)Θ̂(j − 1) (4-6)

K(j) = P (j − 1)Φ(j)T

I + Φ(j)P (j − 1)Φ(j)T
(4-7)

P (j) = P (j − 1) −K(j)Φ(j)P (j − 1) +R1 (4-8)

Θ̂(j) = Θ̂(j − 1) +K(j)ϵ(j) (4-9)
where P is the covariance matrix, ϵ is the prediction error and K is the gain. In
each iteration, the vector of parameters is corrected with a factor proportional
to the error between the actual and the estimated vector F . In order to execute
the identification procedure given by the Equations (4-6)-(4-9), the matrix
P (0) and the vector Θ̂(0) must be initiated at iteration j = 0. In most cases,
P (0) is properly defined as a diagonal matrix with large entries and the initial
estimation of vector Θ̂(0) may be defined as zero, so that the estimator does
not converge to a local minimum [179].
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It is important to note that the trace of P decreases along with the
iterations and tends to zero if R1 is not considered. So, when the system is
time-varying or in online applications, it is important to define a matrix R1

with large entries, so that the trace of P remains in a large value. In offline
applications or time-invariant systems, R1 may be defined as zero.

4.2
Kalman Filter Nonlinear Estimation Methods

In most control applications, not all controlled state variables are mea-
surable, which leads to the development of estimators, to observe these non-
measurable variables that must be used on control laws. The existence and
efficiency of the estimator are conditioned to the observability of the system,
which indicates that all states may be observed through the output variables.

In this section, two Kalman-based methods for nonlinear state estimation
are presented: the EKF and UKF.

4.2.1
Extended Kalman Filter

The EKF is applied to a discrete-time system, such as described by Eq.
(4-1). The algorithm is presented below, in which x̂(i|j) means the state at
sample i, estimated on sample j, matrices P , R and Q are, respectively, state
prediction covariance, the covariance of a supposed gaussian white-noise on
the process model and the covariance of a gaussian white-noise on measures.
For improving accuracy, predicted and updated states on Equations (4-15) and
(4-18) must be constrained to their physical bounds.

1. Obtain function Jacobians:

F (k − 1) = ∂f

∂xx=x̂(k−1|k−1)
(4-10)

H(k − 1) = ∂h

∂xx=x̂(k−1|k−1)
(4-11)

2. Calculate state prediction covariance:

P (k|k − 1) = F (k − 1)P (k − 1|k − 1)F (k − 1)T +Q(k − 1) (4-12)

3. Calculate residual covariance:

S(k) = R(k − 1) +H(k − 1)P (k|k − 1)H(k − 1)T (4-13)

4. Obtain filter gain:

W (k) = P (k|k − 1)H(k − 1)TS(k)−1 (4-14)
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5. Obtain predicted states:

x̂(k|k − 1) = f(x̂(k − 1|k − 1), u(k − 1)) (4-15)

6. Calculate measurement prediction:

ẑ(k|k − 1) = h(x̂(k|k − 1)) (4-16)

7. Calculate measurement residual:

ν(k) = z(k) − ẑ(k|k − 1) (4-17)

8. Update state estimate:

x̂(k|k) = x̂(k|k − 1) +W (k)ν(k) (4-18)

9. Update state covariance:

P (k|k) = P (k|k − 1) −W (k)S(k)W (k)T (4-19)

4.2.2
Unscented Kalman Filter

The first step of EKF is a linearization of the system, using the Jacobians.
However, for highly nonlinear systems or when the Jacobians F and H are
discontinuous, this linearization may harm the estimation process, leading
to non-accurate results. UKF has been developed for this kind of system,
since it applies unscented transformations [17], instead of linearization, for
the prediction and update of estimated states. These transformations are part
of the algorithm, which is presented on Equations (4-20) to (4-35). As UKF
does not depend on derivatives and Jacobians, its results are better, even with
discontinuities and nonlinearities. It is important to remark that matrices P , Q
and R have the same sense described for EKF, as well as the physical bounds
that must be imposed on predict and update steps.

1. Choose 2n sigma points near to states estimated for previous step:

x̌(i)(k − 1) = x̂(k − 1) + x̃(i), i = 1, ..., 2n (4-20)

x̃(i) = (
√
nP (k − 1))T

i , i = 1, ..., n (4-21)

x̃(n+i) = −(
√
nP (k − 1))T

i , i = 1, ..., n (4-22)

In these equations,
√
nP (k − 1) is the Cholesky transformation of nP (k−

1)
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2. Use state equation of the system to transform sigma points:

x̌(i)(k) = f(x̌(i)(k − 1), u(k − 1)), i = 1, ..., 2n (4-23)

3. Combine transformed sigma points to obtain a prediction of state esti-
mation:

x̄(k) = 1
2n

2n∑
i=1

x̌(i)(k) (4-24)

4. Estimate a prediction of error covariance:

P̄ (k) = 1
2n

2n∑
i=1

(x̌(i)(k) − x̄(k))(x̌(i)(k) − x̄(k))T +Q (4-25)

5. Choose n sigma points near to predicted states:

x̌(i)(k) = x̂(k) + x̃(i), i = 1, ..., 2n (4-26)

x̃(i) = (
√
nP̄ (k))T

i , i = 1, ..., n (4-27)

x̃(n+i) = −(
√
nP̄ (k))T

i , i = 1, ..., n (4-28)

6. Use output equation to transform sigma points into predicted measure-
ments:

ž(i)(k) = f(x̌(i)(k), u(k)), i = 1, ..., 2n (4-29)

7. Combine the predicted measurements related to sigma points to obtain
estimated measurement at time k:

ẑ(k) = 1
2n

2n∑
i=1

ž(i)(k) (4-30)

8. Estimate the covariance of predicted measurement:

P̄z = 1
2n

2n∑
i=1

(ž(i)(k) − z̄(k))(ž(i)(k) − z̄(k))T +R (4-31)

9. Estimate cross covariance between predicted states and estimated mea-
surement:

P̄xz = 1
2n

2n∑
i=1

(x̌(i)(k) − x̄(k))(ž(i)(k) − ẑ(k))T (4-32)

10. Calculate Kalman Filter gain:

W (k) = PxzP
−1
z (4-33)

11. Update state estimate:

x̂(k) = x̄(k) +W (k)(z(k) − ẑ(k)) (4-34)
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12. Update state covariance:

P (k) = P̄ (k) −W (k)PyW (k)T (4-35)

4.3
Moving-Horizon State Estimation

Among studied estimators, the MHSE is the most recent and has been
developed in the context of Model-based Predictive Control (MPC), due to
the duality between control and observer algorithms. The main purpose of the
MHSE is to estimate the states at the current time, using the recent informa-
tion about the measured inputs and outputs of the system, as illustrated in
Figure 4.1.

current

timeobserving horizon

time

sample

measured inputs

estimated states

� � − �

� � − � �

� � − � �

� � �

*

*

*

measured outputs
� �

� � − �

� � − �

� �

t-N t-k t

Figure 4.1: MHSE strategy.

The MHSE is performed through a constrained optimization problem,
whose cost function depends on the estimated states and the measured inputs
and outputs along the observing horizon of size N . This cost function may be
defined as:
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J(x̂(·), u(·), z(·)) = ρ∥x̂k−N |k − x+
k−N |k∥2 +

k∑
i=k−N

∥h(x̂i|k, ui) − zi∥2 (4-36)

In this formulation, N is the receding-horizon window size and ρ is the
weight factor, which is a parameter to associate different relevance for measured
data and dynamic model prediction. Note that x̂j|k is the estimation of states
at sample j, performed at sample k and x+

k−N |k is a prediction of the states at
the beginning of the horizon, which is based on the dynamic model, so that:

x+
k−N |k = f(x̂k−N−1|k−1, uk−N−1) (4-37)

The cost function may also be defined with higher complexity, as de-
scribed as follows:

J(x̂(·), u(·), z(·)) = ∥x̂k−N |k − x+
k−N |k∥2

P
+

k∑
i=k−N

∥zi − ẑi∥2
Q (4-38)

In the Eq. (4-38), P and Q are weighting matrices, which may associate
different contributions to the prediction of each state variable and experimental
data, which may be interesting

The state estimation may be performed using different arguments. In a
first approach, the argument of the optimization problem is the set of states
on the beginning of the horizon, as presented in the Eq. (4-39).

x̂k−N |k = arg min J(x̂(·), u(·), z(·))
where x̂i+1|k = f(x̂i|k, ui)

ẑi+1|k = h(x̂i+1|k, ui+1)

(4-39)

Once defined the states estimation on the beginning of the horizon x̂k−N |k,
the state estimation the current sample must be defined through the dynamic
model:

x̂i+1|k = f(x̂i|k, ui), i = k −N, · · · , k − 1 (4-40)
A second approach, which is more efficient but with higher computational

cost, considers as the argument of the cost function all the states along the
observing horizon. In this formulation, the optimization problem is defined as:

[x̂k−N |k : x̂k|k] = arg min J(x̂(·), u(·), z(·))
s.t. x̂i+1|k = f(x̂i|k, ui)

ẑi+1|k = h(x̂i+1|k, ui+1)
xmin ≤ x̂i|k ≤ xmax

(4-41)
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In this last case, the state estimation x̂(k|k) is defined on the problem
itself, eliminating the later step of the first approach.

One of the advantages of the MHSE is to improve the observability of the
system, through a larger observing window, while the Kalman filter approaches
are based on only one sample. For observability analysis in receding-horizon
strategies, let us consider the following observation mapping FN and its
Jacobian JN related to the state vector:

FN =


h(x(t−N))

h ◦ f(x(t−N), u(t−N))
h ◦ f(x(t− 1), u(t− 1)) ◦ · · · f(x(t−N), u(t−N))

 (4-42)

JN = ∂FN

∂x
(4-43)

A system is observable if ∃N > 0, ∀x ∈ X and ∀u ∈ U , so that
rank(JN) = n, that is, the Jacobian is full column rank. For a given system,
this property may be proved by means of software and symbolic calculation
[180].

The solution of the MHSE optimization problem may be performed
through software toolboxes, as available on MATLAB ®, or CasADi symbolic
toolbox [181], which presents many solvers for efficient optimization solutions.

4.4
Neural Network Moving-Horizon Estimation

The operation made in Eqs. (4-39) and (4-41) can be viewed as function
mappings from input and output measurements to state estimates. Being so, it
may be performed using any universal approximation function, as it has been
proposed in [22] and shown in greater detail in [42], where it is proposed the use
of ANN for this purpose. Naturally, the NN will produce approximate results
when compared to the resolution of the online optimization problem, but with
significantly reduced processing time. In other words, a feed-forward NN may
be used to obtain the estimation of states (x̂(k)) using measured inputs and
outputs along a receding horizon and the predicted states at the beginning
of the window, so that, larger information is used, improving the accuracy of
estimation. In this way, the NNMHE may be defined as:

x̂k = NN(Iv) (4-44)
where the information vector Iv contains the measured inputs and outputs
along the observing horizon, as well as the state predicted on the beginning of
the window x+

k−N :
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Iv = [x+
k−N zk−N . . . zk uk−N . . . uk]T (4-45)

Note that the NN proposed may be used to estimate all states or only
those that might be used for control or monitoring tasks. Once demonstrated
that MHSE results are accurate and reliable, they may be used for NN training,
so that the latter, as defined on (4-44) is proposed to be a faster approximation
of the optimization and estimation process of MHSE, enabling the NNMHE
for online applications with less computational cost and processing times. The
methodology of NNMHE is illustrated in Fig. 9.4, for the case study presented
in Chapter 9.

4.5
Evaluation Metrics

The evaluation of these methods may be done with some metrics [22].
One of them is the RMSE based metrics to quantitatively evaluate different
filters estimation accuracy. It is defined as

RMSEk =
√√√√nsim∑

j=1

∥ek,j∥2

nsim

, (4-46)

where ek,j is the error of the state estimate at the j−th estimation process of
a total of nsim realizations. Thus, for smaller values of RMSE at a given time
instant, the better the estimation is. Note that there is a time dependency for
this metric, so that it is possible to track the error on time with different initial
conditions and noise realizations. The RMSE of all evaluated period may be
calculated as the mean of the RMSE of all samples.

The ARMSE metric is defined as

ARMSE =
T∑

k=T −S

1
S + 1

√√√√nsim∑
j=1

∥ek,j∥2

nsim

, (4-47)

where T is the final estimation procedure time and S is the final window being
considered to calculate the metric. As it calculates the RMSE solely in the last
time samples of the estimation procedure, it measures the error after enough
time for convergence of the estimation method and denotes better asymptotic
state tracking capability.

Both RMSE and ARMSE are dimensional, so that their value may
present difficulties to understand, according to the magnitude of the variables.
So, a dimensionless quantitative evaluation may be done with the R2, which
range varies between 0 and 1, and is defined as:

R2 = 1 −
∑n

k=1 ∥ek∥2∑n
k=1 ∥xk − x̄∥2 (4-48)
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The closer to 1 the R2, the more accurate is the estimation, enabling
easier the evaluation of variables of different magnitudes.

DBD
PUC-Rio - Certificação Digital Nº 1912768/CA



5
Model-based Predictive Control

This chapter deals with the MPC theory and implementation. In the
first section, we present its concept and the different formulations of the
optimization problem on which it is based. The second one is about the
computational algorithm and some remarks about its application.

5.1
MPC formulation

The MPC is based on an optimization process. Different to feedback
control techniques, MPC aims to define control actions based on predicted
future states or outputs of the systems, instead of previous output measures.
The prediction is related to a moving horizon window of time or samples, with
a predefined size (Figure 5.1).

There are many definitions for MPC optimization problem, for both

current

time prediction horizon

time

sample

r(t)

defined control

sequence

predicted output

� � � �)

� � � �)

t+Nt+kt

Figure 5.1: MPC strategy.
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continuous and discrete-time systems. Considering a nonlinear discrete system
described by equation (4-1), the cost function may be defined as:

J(u(·),x(·)) =
k+N∑
i=k

∥(z(i) − r(i))∥2
Q + ∥(u(i) − ur(i))∥2

R + ∥(∆u(i))∥2
S (5-1)

where, r(i) and ur(i) are references for, respectively, outputs and control
inputs. Each portion of cost function is weighted by diagonal matrices Q,
R and S, so that one may be considered more relevant than others, besides
variable dimensions must be equalized. The last term is important to ensure
that there are no high shifts on control sequence, which is unfeasible on most
dynamic systems. It is important to remark that this cost function definition
may be adapted according to different requirements of the controlled system,
so that it is not a definitive formulation.

For the solution of the MPC optimization problem, two main strategies
are presented, namely the single and multiple shooting ones. In the first one,
the argument of the cost function is only the sequence of control inputs within
the prediction window, that is, from sample k + 1 to k + N , as presented on
Equation (5-2).

u(·) = arg min J(u,x)
s.t. x(i+ 1) = f(x(i), u(i))

z(i+ 1) = h(x(i+ 1))
umin ≤ u(i) ≤ umax

(5-2)

In the multiple shooting solution [182], the argument is composed of the
sequence of control inputs and the states of the system within the prediction
window. Despite the higher computational cost, the multiple shooting method
is more accurate and allows to include states boundaries on the cost function
[183]. Due to these advantages, we explore the multiple-shooting method (Eq.
(5-3)) in this work.

[u(·);x(·)] = arg min J(u,x)
s.t. x(i+ 1) = f(x(i), u(i))

z(i+ 1) = h(x(i+ 1))
x(k) = x0

umin ≤ u(i) ≤ umax

xmin ≤ x(i) ≤ xmax

(5-3)

The implementation may be realized by some toolboxes, as, for example,
MATLAB [184] and CasADi [181], which is an open-source software for
optimization. This symbolic framework can be used to solve high flexible
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optimization problems, especially optimal control ones, and, consequently,
MPC, that are constrained by differential equations.

Specifically related to nonlinear systems, the NMPC algorithms solution
may be obtained using CasADi, which includes some solver plugins for defining
the local minimum of constrained optimization problems. The solution to
NMPC optimization problems using CasADi is performed through a nonlinear
program (NLP) and in this work is used the plugin Interior Point Optimization
(IPOPT), which may be used on higher dimension problems, such MPC, with
faster local convergence [181]. The NLP is solved through symbolic variables,
using the Lagrange Multipliers method and the Karush-Kuhn-Tucker (KKT)
conditions [43]. The implementation of the optimization problems used on
NMPC and MHSE solutions is presented in detail in [43] and the complete
information about the usage of CasADi for this purpose is available in [181].

5.2
Constrained Optimization Problems

Generally, a constrained optimization problem, as the presented for
MHSE and MPC applications, may be formulated as:

arg min f(x)
s.t. gi(x) = 0, i = 1, · · · , p

hj(x) ≥ 0, j = 1, · · · , q

(5-4)

The function f(x) is called the cost or objective function, whose argument
is the nth-order vector x. The problem is constrained for p equality constraints
gi(x) and q inequality constraints hj(x).

For the resolution of the optimization problem, a Lagrangian function
must be defined, so that:

L(x, λ, µ) = f(x) −
p∑

i=1
λigi(x) −

q∑
j=1

µjhj(x) (5-5)

in which λi and µj are called the Lagrange multipliers related, respectively, to
equality and inequality constraints [185]. The feasible set Ω of the optimization
problem is:

Ω = {x| gi(x) = 0, i = 1, · · · , p; hj(x) ≥ 0, j = 1, · · · , q} (5-6)

The first-order conditions, also known as Karush-Kuhn-Tucker (KKT)
conditions, are presented in the following. These conditions are necessary, but
not sufficient, for the existence of a local solution to the optimization problem.
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Supposing that f , gi, hj are continuously differentiable, for a local
solution x∗ ∈ Ω of the Eq. (5-4), there is a set of Lagrange multipliers (λ∗, µ∗)
so that the following conditions are satisfied:

∇xL(x∗, λ∗, µ∗) = 0 (5-7a)
gi(x∗) = 0, for i = 1, · · · , p (5-7b)
hj(x∗) = 0, for j = 1, · · · , q (5-7c)

µj
∗ ≥ 0, for j = 1, · · · , q (5-7d)

λi
∗gi(x∗) = 0, for i = 1, · · · , p (5-7e)

µj
∗hj(x∗) = 0, for j = 1, · · · , q (5-7f)

The two last ones are known as complementarity conditions, which
indicates that if the condition is active, that is equal to zero, the relative
Lagrange multiplier is positive. If the condition is inactive, its Lagrange
multiplier is zero. In summary, the value of each multiplier indicates the
application of the condition [185].

The second-order conditions are the sufficient ones and are related to
second derivatives of the Lagrangian. It may be proved that a feasible point
x∗, for which a set of Lagrange multipliers (λ∗, µ∗) satisfy the KKT conditions,
is a strict local solution for the optimization problem if:

wT ∇2
xxL(x∗, λ∗)w > 0, ∀w ∈ C(x∗, λ∗, µ∗), w ̸= 0 (5-8)

in which the set C(x∗, λ∗, µ∗) (critical cone) contains the critical directions w
for which its is not possible to define the direction of ∇f(x∗). Or:

w ∈ C(x∗, λ∗, µ∗) ⇒ wT ∇f(x∗) =
p∑

i=1
λiw

T ∇gi(x)+
q∑

j=1
µjw

T ∇hj(x) = 0 (5-9)

In summary, the sufficient condition is that the Hessian of the Lagrangian
function must be positive-definite for all critical directions [185].

In this work, the main algorithm used for numerical solving of the
constrained optimization problem is the Interior-Point Optimizer (IPOPT),
which employs a point inside the feasible region to approximate the solution.
The cost function is, then, replaced by a barrier function, which takes into
account the inequality constraints, so that:

P (x, ρ) = f(x) − ρ
q∑

j=1
log(hj(x)) (5-10)

Because of the barrier function definition, the closer the iterate solution
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of the boundaries of feasible sets, the higher its value, tending to infinity.
This prevents the iterate point to leave the feasible region. Besides that, as
the solution is searched inside the feasible region, in which any constraint is
active, the problem may be solved using unconstrained optimization methods
[185].

5.3
Computational Algorithm

The algorithm for MPC implementation for control of dynamic systems
is presented below:

(i) Define the prediction window N and the weighting matrices Q, R and
S;

(ii) Initialize the sample counting k = 0;

(iii) Read the system states xk at the current sample;

(iv) Obtain the optimization problem solution, according to Single-shooting
(Eq. (5-2)) or Multiple-shooting (Eq. (5-3)) formulations;

(v) Apply the control action uk on the open-loop system;

(vi) Increment the sample counting k = k + 1;

(vii) Return to step (iii).

Some comments must complement the information about the algorithm.
Regarding the initialization parameters (item (i)), it is evident that the larger
the prediction window, the higher the computational effort required for each
sample. So, this parameter must be designed so that it corresponds to a
prediction time proper for the dynamic system in question. The weighting
matrices may be used for equalizing the dimensions of the variables, but also
to prioritize or penalizes one or some of them. The higher the weight value of
a variable, the higher its relevance to cost function.

In the third step (item (iii)), the system states must be completely
defined, either through measurements or estimation. If not all states may be
measured, one of the estimation methods presented in Chapter 4 must be
applied. This set of states must be used on the first one-step prediction of the
single-shooting method or as a constrain of the multiple-shooting one.

Regarding the control action (item (v)), it is important to remark that
for both single-shooting and multiple-shooting formulation, only the control
action related to the current sample is used. The remainder variables of the
argument are used for the initialization of the algorithm in its next iteration.
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6
Nonlinear Grey-box Identification of a Landing Gear based on
Drop Test Data

In many aircraft applications, especially on an antiskid control design, it
is important to understand and consider the gear walk phenomenon, which is
characterized by the deflection on the landing gear structure due to the high
braking force acting at the tire contact with the ground. This phenomenon is
observed on drop tests, and its prediction on landing gear design depends on an
adequate evaluation of the equivalent stiffness and damping of the structure,
which is difficult, since they depend on the mechanism configuration. In this
paper, it is presented a grey-box identification methodology for estimating
these parameters of the landing gear, based on simulated data of a drop test.
As the drop tests are mandatory obligatory for certificating modern aircraft
according to e.g. Federal Aviation Regulations (FARs) by the Federal Aviation
Administration (FAA), we hope to introduce a method based on measurements
that are available at the design phase. The method will be useful to decrease
men/hour costs and increase reliability by enabling better and more accurate
anti-skid design.

6.1
Problem Definition

Landing gears are critical parts of the hydromechanical subsystem of an
aircraft. During braking, their purpose is to dissipate kinetic energy efficiently
to ensure proper aircraft performance. The anti-skid system orchestrates
braking given the inputs by the pilot. Its primary purpose is to avoid wheels
to block and thus maximize brake efficiency. However, landing gears have rich
nonlinear dynamics, which makes difficult the design of anti-skid control laws
[186]. Torsional and translational vibrations are observed when the mechanical
dynamics of such complex multi-body systems is measured. Shimmy happens
when the torsional structural dynamics is poorly damped [187], while the gear
walk phenomenon is observed when translational deflection amplitude in the
landing gear is relatively high due to the braking force acting at the tire contact
with the ground [57]. In aircraft braking simulations, we must efficiently
evaluate or predict the gear walk phenomenon. The deflection observed during
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gear walk is limited by the stiffness and damping of the ensemble composed of
suspension and structure of the landing gear. In this context, it is of utmost
importance to be able to model and simulate efficiently the aforementioned
phenomena so that the design meets specified requirements.

6.2
Drop Test Simulations

For obtaining the data used on identification, the complete dynamics
of the landing gear mechanism is simulated, such explained previously in the
previous section. The simulation aims to reproduce the drop test. This test
consists of simulating the moment the aircraft landing gear touches the ground,
only with vertical movement. The initial conditions are set to be equal to the
real test. So, the wheel receives an initial angular velocity, so that there is
braking force and the ensemble is released from a certain height.

The dynamical equations are, then, numerically solved so that the
generalized coordinates and their first derivatives are found. The accelerations
associated with each coordinate must be estimated as:

q̈k = q̇k+1 − q̇k−1

2∆t (6-1)
The tires are considered elastic elements, with internal damping. So, in

the simulation, the vertical load is calculated as proportional to its vertical
deformation and deformation rate. However, since the normal force on the
ground is measured on drop tests, its value is computed in the simulation.
Beyond that, the set of measured variables on the drop test includes also the
vertical acceleration of the sprung mass and the vertical displacement of the
wheel hub, which may lead to the angle between the suspension and the sprung
mass, and its derivatives.

The simulations are performed considering dry asphalt as ground, for
which the Burckhardt parameters ϑ1, ϑ2 and ϑ3 are, respectively, 1.2801, 23.99
and 0.52 [177].

The results of the simulation of the drop test, with the actual parameters
are presented in the following section.

6.3
Results

In the present section, we describe the results of applying the grey-box
estimation procedure for the landing gear case with simulated drop-test data.
The present grey-box identification is based on simulated data from a landing
gear drop test. The main goal is to determine the unknown parameters from the
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Figure 6.1: Vertical displacement of the sprung mass.

Figure 6.2: Vertical velocity of the sprung mass.

model, such as the inertial and, mainly, the equivalent damping and stiffness
of the ensemble of suspension and structure of the landing gear.

The results of the dynamical equations are the shown in figures 6.1 and
6.2. As the landing gear structure works similarly to a vehicular suspension,
it is expected that the z-coordinate of the sprung mass presents a damped
oscillatory movement.

The angle θ, defined between the structure and the vertical axis, has
a nonzero value initially and increases toward the maximum value when the
wheel touches the ground and the tire force begins to actuate, producing a
momentum that acts positively at this angle, as seen in Figure 6.3. The angle
θ is limited by the stiffness of the structure and the suspension spring.

Since the dynamical equations of the landing gear are known, it is possible
to write them as a matrix multiplication, such as presented on the Eq. (4-4),
which is useful for the identification procedure:
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Figure 6.3: Angle between the vertical axis and the concentrated mass of the
structure of landing gear.

Φ =


ẍ 0 −θ̈ cos θ + θ̇2 sin θ 0 0 0 0

z̈ + g 0 −θ̈ sin θ + θ̇2 cos θ 0 0 0 0
0 θ̈ −ẍ cos θ + z̈ sin θ + g sin θ θ − θ0 θ̇ 0 0
0 0 0 0 0 ϕ̈ ϕ̇

 (6-2)

Θ =
[
M1 M2 M3 k b J c

]T
(6-3)

F =


0
Fz

FzL sin θ + FzµL cos θ
FzµR − T

 (6-4)

Once it is supposed the vector on the right side is known, through
measured or estimated variables, we may affirm that there are two decoupled
systems, which are the sprung mass with suspension and the landing gear
wheel. We may assume this because the parameters of each system do not
affect the dynamics of the other, as observed in the matrix in Eq. (6-2). The
parameters associated with the wheel are usually known or they may be easily
measured, so that we may neglect the last equation and the parameters J and
c in the identification process.

It is important to note that it is not possible to predict the mass,
length and moment of inertia of each body, but only the combination of
them, described by the parameters M1, M2 and M3, in Eqs (3-37), (3-38)
and (3-39). The set of estimated parameters should be as small as possible
and any parameter should not be a linear combination of others.

We may also do a deduction related to the horizontal displacement of
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the sprung mass. This variable remains so close to zero in all the simulation
and the real drop test, because it is realized in a confined space. So, even if
this variable is estimated, its value should be so small that could be lost in the
associated noise, harming the identification process.

Consequently, the horizontal displacement of the wheel hub is also small,
and the tire has a slip near to 1 in all the test. Given the above, the matrices
described on Eqs (6-2), (6-3) and (6-4) may be adapted to:

Φ =
z̈ + g 0 −θ̈ sin θ + θ̇2 cos θ 0 0

0 θ̈ −ẍ cos θ + z̈ sin θ + g sin θ θ − θ0 θ̇

 (6-5)

Θ =
[
M1 M2 M3 k b

]T
(6-6)

F =
 Fz

FzL sin θ + FzµL cos θ

 (6-7)

Using all the data generated on the dynamics, the process of estimation
becomes precise as the results show, reducing the error of estimation on both
approaches. In the Kalman Filter estimation, the initial covariance matrix is
defined as a diagonal matrix with 1E3 as entries. The estimated vector of
parameters is initialized as zero. Table 6.1 presents the comparative analysis
of the results, considering that there is no measurement noise.

Table 6.1: Estimation results without measurement noise.

Parameter (Unit) Value LS LS Error (%) KF KF Error (%)
M1 (ton) 10.2 10.2000 0.0002 10.2001 0.0005
M2 (kg.m2) 126 124.6235 -1.0925 124.6235 -1.0924
M3 (kg.m) 150 151.8450 1.2300 151.8456 1.2304
k (kN/rad) 450 446.4083 -0.7981 446.4083 -0.7982

b (kN.s/rad) 90 89.8058 -0.2157 89.8058 -0.2157

The efficiency of the proposed method is evidenced by the small values
of the errors of estimation. Since the main goal is to determine the angular
stiffness of the ensemble suspension and structure, it is important to evaluate
its error, which is less than 1% in terms of absolute value. The errors
associated with inertial parameters are due to the approximations adopted
in this methodology. However, as they are small, it may be affirmed that these
approximations do not harm the estimation. It should be observed also that
both approaches present similar results. So, the definition of which one must
be used may follow criteria other than precision.

Considering that the measurement may be affected by noises, we present
two additional results. In the first one, presented in Table 6.2, it is considered
that the measured data has normal distribution with a standard deviation
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of 0.1%. In the second one, presented on Table 6.3, the standard deviation
adopted is 1%.

The errors associated with estimated parameters, including stiffness and
damping of the landing gear, have the same magnitude as the case without
noise. These errors are small and adequate, which denotes that the proposed
methodology remains efficient, even if there are measure noises associated with
the sensors.

Table 6.2: Estimation results with measurement noise of 0.1%.

Parameter (Unit) Value LS LS Error (%) KF KF Error (%)
M1 (ton) 10.2 10.2000 0.0002 10.2000 0.0005
M2 (kg.m2) 126 124.6341 -1.0841 124.6341 -1.0841
M3 (kg.m) 150 151.9179 1.2786 151.9184 1.2790
k (kN/rad) 450 446.3996 -0.8001 446.3996 -0.8001

b (kN.s/rad) 90 89.8052 -0.2164 89.8052 -0.2164

Table 6.3: Estimation results with measurement noise of 1.0%.

Parameter (Unit) Value LS LS Error (%) KF KF Error (%)
M1 (ton) 10.2 10.2001 0.0008 10.2001 0.0011
M2 (kg.m2) 126 124.6797 -1.0478 124.6797 -1.0478
M3 (kg.m) 150 156.4681 4.3121 156.4687 4.3125
k (kN/rad) 450 445.6982 -0.9560 445.6982 -0.9560

b (kN.s/rad) 90 89.7471 -0.2810 89.7471 -0.2810

It may be observed that in the second scenario the precision of the
estimation of inertial parameters is worse than in the other cases, especially for
the parameter M3, but the error is not considerable (less than 5%). However,
the stiffness and damping of the suspension of the landing gear are estimated
with errors of the same magnitude as the ones observed in the noise-free
scenario, which leads to conclude that the methodology proposed is robust,
even if the sensors have no measurement noise. These parameters are the main
ones in the analysis of the gear walk phenomenon.

Figure 6.4 shows a comparison between the measured and simulated data
for the angle of the structure, using parameters estimated presented in Table
6.3.

6.4
Discussion

This contribution presented a methodology that may be used in the
identification of structural stiffness and damping parameters of landing gears,
which is demonstrated to be effective even in scenarios with different scales
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Figure 6.4: Comparison between measured and estimated angle of the landing
gear structure.

of measurement noise. The errors presented are not harmful to the gear walk
prediction, and, consequently to the application for braking systems design.

A possible improvement in the methodology is the association with state
estimators, for observing the variables that are not measurable, which must
enlarge its range of application and make viable the application with real drop
test data.

Other future possibilities are related to using different modeling tech-
niques, such as bond graphs [188], which enables modularity to dynamic mod-
eling and makes easier the modeling and integration of systems with a high
number of subsystems, such as aircraft.

Finally, it is important to mention that the accurate estimation of time-
invariant parameters depends on the identifiability of the system, which assures
that the set of parameters is unique for a given set of measurements [189]. In
the case evaluated, as the results are accurate, we may infer that the system is
identifiable. But for more complex systems, with a higher number of estimated
parameters, this property must be previously evaluated.
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7
Comparison of Nonlinear Receding-Horizon and Kalman Filter
Strategies for Ground Vehicles Longitudinal Slip Estimation

Friction efforts are present in almost all mechanical applications, due to
contact between bodies and there are many important situations, in which
they must be properly controlled. Among these, there are tire contact forces,
which are the focus of many studies in autonomous vehicles and control
applications on vehicle systems, since the tire forces and moments are nonlinear
and may be modeled as friction efforts. Any control synthesis focused to
optimize its performance must be associated with state estimators, since efforts
depend on slip variables, such as longitudinal slip and sideslip angle, and it
is not possible to accurately measure them. So, in this contribution, three
state estimation algorithms are evaluated: EKF, UKF and MHSE, which are
applied to a quarter-car model for longitudinal dynamics. It is presented that,
for both traction and braking phases, the MHSE is more accurate, since it
takes explicitly into account the nonlinear model in the estimation process,
independently of Jacobian sensitivities to discontinuities as is the case here, but
UKF presents a good cost-benefit ratio, since their results are much better than
EKF, with lower processing times. So, it is demonstrated that the developed
estimators may be successfully associated with controllers with the objective
of optimizing tire performance in traction and braking control.

7.1
Problem Definition

In many mechanical applications, friction interactions are commonly
found, once there is usually contact between bodies. In most cases, these
interactions have a nonlinear nature, which difficult any attempt to control the
system performance or mitigate their effects, when harmful. Coulomb friction,
tire-road forces in vehicles and bit-rock interaction in the perforation process
are some examples of these effects.

However, in control applications, it is not commonly possible to measure
all states or all controlled variables. In these situations, it is usually used
a state observer, which has as function to estimate the states based on the
measured variables. Among the state estimation algorithms, the Kalmar Filter
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(KF) is one of the most known, such as its versions applied to nonlinear
systems, the EKF and the UKF [17]. In the last decades, other algorithms
have been developed, looking for more robustness and accuracy. The Moving
Horizon Estimation (MHE) is one of these, defined by [22] as a powerful
and robust approach, suitable in systems with modeling uncertainties and
numerical errors. It was developed as a dual of Model Predictive Control and
estimates the states variables using a defined horizon of recent information and
measures. These algorithms are studied in many different applications [23], so
that it is possible to clearly understand their power and robustness.

In vehicle systems, nonlinear observers are implemented on many control
applications, but we may specially remark those dependents on tire dynamics,
such as braking, traction and stability control. In most applications, the
controlled variables, usually longitudinal slip, attitude angles, sideslip angle
and others are impossible to measure, which justifies the implementation of
observer-based control.

7.2
Simulation and Results

The quarter-car model, presented in Section 3.3, is simulated with the
parameters of a typical passenger vehicle, moving on dry asphalt. To evaluate
the system and the estimators, its dynamics is simulated considering an input
torque defined with a proportional control law, so that the vehicle must track
a reference speed of 20m/s. Then the input traction torque is defined as:

T = kp(vref − v) (7-1)
In the simulations, we consider that the output variable, that is the

wheel rotation, presented in Figure 7.1, is measured with a gaussian white
noise (ξn). So, the main objective of the estimators is to obtain the states
along the time, based on this measured one. In a first analysis, we consider
that initial conditions are well-known and that there is a measurement noise
(ξn) with normal distribution and standard deviation of 1%, and these results
are demonstrated in Table 7.1. The results for longitudinal slip are presented
on Figures 7.2 and 7.3. We may remark that the non-measured variables
are estimated with good accuracy, especially the longitudinal slip, which is
important in traction control and stability applications.

We must do two remarks about these results. The first one is related
to slip estimation. As there is no relation between the definition of input
torque and slip, the initial values of longitudinal slip are very high, which
is represented by the situation of the wheel slipping on the road (Figure 7.1).
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Figure 7.1: Estimated wheel rotation (rad/s).

Table 7.1: RMSE results with well-known initial conditions.

State EKF UKF MHSE
λ 1.1005 0.8487 1.9675E-4
v 0.0233 0.0012 0.0022

In a second phase, the rotation falls, reducing the longitudinal slip to values
between 0 and 1 (details in Figure 7.2).

The second remark is related to the Jacobians. The state equation related
to the longitudinal slip presents many discontinuities points, mainly related to
situations in which the velocity is zero. In this way, when this state is very low,
the Jacobian F presents high values, harming the estimation process and also
compromising the convergence of the Extended Kalman Filter. To prevent this
situation, the same constraints applied to state variables are applied during the
estimation process. As UKF and MHSE do not depend on derivatives, they are
not affected by this situation and, so, their results are much better, presenting
high relative reductions on RMSE. It is important to remark that the states
are estimated based on a noisy signal and compared with the supposed real
one, which is noiseless. It is remarkable also the nearest values presented by
the MHSE result (details in Figure 7.3).

In other analysis, we may realize the estimation process with supposed
unknown initial conditions, defined by uniformly distributed random values on
the interval [0, 1], many times. This way, it is possible to observe its tendency
in more sampled data and to verify if the estimators are capable to correct
states even if the initial conditions are badly defined or unknown.

Table 7.2 presents the evaluation of the mean and the standard deviation
of the ARMSE for longitudinal slip (λ), which is one of the non-measured
states and is used on control strategies. In this table are presented the
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Figure 7.2: Estimated longitudinal slip.
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Figure 7.3: Estimated longitudinal slip, in detail.

simulation results for different noise standard deviations, after the convergence
of RMSE(t), previously defined as ARMSE (equation (4-47)).

We may observe in Table 7.2 that MHSE is more robust in the presence
of white-noise, since its ARMSE mean and standard deviation are lower than
the ones of EKF and UKF. Meantime, it is important to remark that UKF
results are closer to MHSE ones than EKF ones, which leads us to understand
that UKF algorithm may be used on applications in which high precision is not
required, with a low processing time (Table 7.3). A more detailed analysis may
be done interpreting the RMSE(t), as defined by equation (4-46), and that is
presented on Figure 7.4, Figure 7.5 for, respectively, standard deviations of
0.001 and 0.05 on the measurement noise.

The last analysis we may do concerns the elapsed time for each simulation
process, which may be observed in Table 8.4.

We must remark that processing time is an advantage of Kalman filter
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Table 7.2: ARMSE analysis for longitudinal slip (λ) estimation.

Algorithm EKF UKF MHSE

ξn = 0 Mean 0.0137 4.8384E-7 6.9993E-16
St Dev 1.3726E-4 3.3247E-9 2.8315E-18

ξn = 0.001 Mean 0.0075 6.0831E-5 3.3039E-5
St Dev 2.2511E-4 3.4296E-5 1.8912E-5

ξn = 0.01 Mean 1.7319 6.0332E-4 3.2287E-4
St Dev 0.8505 3.3201E-4 1.9260E-4

ξn = 0.05 Mean 0.0143 0.0033 0.0016
St Dev 0.0024 0.0018 9.1652E-4

ξn = 0.1 Mean 0.9619 0.0082 0.0041
St Dev 0.0773 0.0051 0.0027
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Figure 7.4: RMSE(t) for measurement noise of 0.1%.

strategies, since they depend only on model order and do not measure noise.
MHSE processing time increases as the white-noise increases, but in KF
approaches it remains similar. Due to white noise on measures, the states
may change beyond the predicted by the mathematical model, harming the
optimization process and time processing. These variations affect the KF
algorithms only on the update of state estimation, which is performed by a
matrix operation and does not affect elapsed time.

7.3
Discussion

We may observe, from the results, the efficiency of the MHSE, in
comparison to EKF and UKF, for state estimation in nonlinear applications,
especially with friction and discontinue efforts. In the studied case, all the
algorithms estimate the non-measured states. However, when the system is
subjected to measurement errors and uncertainties in its initial conditions, the
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Figure 7.5: RMSE(t) for measurement noise of 5%.

Table 7.3: Mean time for simulation (s).

Case EKF UKF MHSE
ξn = 0 0.1892 0.6080 12.2751

ξn = 0.001 0.1828 0.5888 24.2039
ξn = 0.01 0.1825 0.5875 25.9196
ξn = 0.05 0.1820 0.5874 28.5576
ξn = 0.1 0.1839 0.5910 30.3289

MHSE presents more accurate and robust results. It is important to remark
that the results of UKF demonstrate its good cost-benefit ratio, since its results
are relatively good, with lower processing time.

The main future possibilities derived from this contribution are related to
the application of the MHSE in more complex vehicle systems, especially those
comprising the lateral dynamics or with simultaneous time-varying parameters
estimation.

Another possible research is the association of the MHSE observer with
control laws for autonomous or highly automated vehicles. Due to its proven
accuracy, the MHSE may be useful for control systems aiming for improved
efficiency and safety, and reduced energy consumption.
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8
Tire-road Friction Coefficient Estimation Using Nonlinear
Receding-Horizon and Kalman Filter Strategies

In vehicle control applications, the use of estimation algorithms is neces-
sary since some states and parameters are not measurable. Even on highly in-
strumented vehicles, tire-road interaction parameters must be estimated, once
they may easily change and depend on road conditions and quality. For vehicle
longitudinal control using model-based laws, such as model predictive control,
optimal performance is related to informing accurate and current values of fric-
tion coefficient. In this way, this paper aims to evaluate nonlinear approaches
for friction coefficient estimation, using an augmented states formulation for
the vehicle model, not explored in the literature thus far. We compare three
nonlinear observers: EKF, UKF and MHSE. The algorithms are evaluated with
simulated and experimental data. In the former case, the results demonstrate
the MHSE robustness, even under noisy measures. The latter case shows that
all approaches can be applied with the augmented states proposed approach,
though Kalman Filter ones have a more sensitive and difficult calibration,
which makes their performance deteriorate, while MHSE has fewer design pa-
rameters and overall better results. We conclude that MHSE presents a high
potential for application on vehicle control and estimation, with the use of
the herein proposed augmented states formulation for friction and states joint
estimation.

8.1
Problem Definition

In the present contribution, we propose a receding-horizon algorithm
for the estimation of µp, based on the longitudinal dynamics of vehicles. The
motion equations consider the friction efforts produced by tires, which are
characterized by their nonlinearity and the discontinuity of derivatives and
Jacobians. This parameter is hardly obtained by experiments and may change
similarly to an uncontrolled disturbance in the system. Besides that, a current
and proper value is required on model-based control laws, so that they may
be optimized. In this way, an augmented states approach for the estimation
algorithms may be useful, so that states and parameters are simultaneously
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estimated.
Therefore, the possible solution presented is the application of nonlinear

estimation algorithms, specially MHSE, which is expected to present better
results, and be more robust and flexible, accordingly to the literature. The
studied observers must be evaluated employing simulated and experimental
datasets.

8.2
Dataset Description

The dataset used for the experimental analysis is made available by the
authors of [116] and [190] and refers to an experimental vehicle developed
at Bucknell University. This vehicle has rear traction, performed by two
independent in-wheel electric motors and steerable wheels on the front axle. A
schematic model of the vehicle, with the variables, is presented in Figure 8.1.
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Figure 8.1: Schematic Model of the Vehicle.

The vehicle is also equipped with instruments, such as encoders on
wheels hubs and steering motors, an inertial measurement unit (IMU), Global
Positioning System (GPS) and force gauges. In this paper, only the variables
related to longitudinal dynamics are used, since there are some maneuvers in
which the initial path is a straight line.

The variables used in this paper are the angular velocity of the wheels,
the longitudinal velocity of the vehicle (Figure 8.2) and the current on the
wheel traction motors (Figure 8.3). These data are preprocessed, so that they
are filtered and treated, for application on the estimation algorithms. Besides
that, a clipping of the data is taken, so that the vehicle longitudinal velocity
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is positive, but near to zero and the input current is different to zero. This is
necessary to ensure the observability of the system on the first samples.
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Figure 8.2: Longitudinal velocity of the vehicle (m/s).
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Figure 8.3: Current at electric motors (A).

Remarkably, most of the vehicle parameters are known, but the tire-
road friction coefficient is not known and may be easily changed because of
many circumstances. Therefore, this parameter and states are intended to be
estimated, as presented in Section 8.3.

8.3
Proposed Approach

Using equations (3-23) and (3-24), and considering the peak value of
friction coefficient µp as a state, with slower dynamics related to other ones,
we obtain the continuous-time nonlinear state-space equations of the system.

xxx = [vx ω1 ω2 ω3 ω4 µp]T (8-1)
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uuu = [i1 i2 i3 i4]T (8-2)

ẋxx = fff(x, u) =



1
m

∑4
i=1 µpp(λi)Fzi

− cv2

Kti1
J

− (µpp(λ1) + fR) rFz1
J

Kti2
J

− (µpp(λ2) + fR) rFz2
J

Kti3
J

− (µpp(λ3) + fR) rFz3
J

Kti4
J

− (µpp(λ4) + fR) rFz4
J

0


(8-3)

zzz = hhh(x) = [vx ω1 ω2 ω3 ω4]T (8-4)
Note that the augmented states formulation assumes that the dynamics

of the unknown changes of µp occur slowly concerning the rest of the system
states. As a further simplification of the physical phenomenon, it is a necessary
step as the changes in friction are independent of other states. It will affect the
estimation process assuming that the friction coefficient does not vary within
the prediction horizon, which for small enough sampling rates is reasonable.
This is however not detrimental as the estimator can be tuned to respond
quickly to such changes and by using the augmented states formulation we
can use the aforementioned nonlinear state estimation methods to obtain the
resulting friction that better fits the state evolution in time.

8.4
Results

In this section, we present the results of the use of the aforementioned
observers for friction coefficient estimation. The parameters used on the
estimation algorithms, for both simulation and experimental analysis, are
presented in Table 8.1. The algorithms are implemented and executed on
MATLAB, using a Windows PC with 32 GB RAM and i7 processor with
2.6 GHz.

Table 8.1: Vehicle Parameters.

Parameter Value
m 1724 kg
r 0.3 m
c 0.5 m−1

fR 0.01
J 2.5 N.m/s2

Kt 50 N.m/A
C2 2.5
C3 6
C4 1
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In the simulation environment, the results presented are the RMSE error
of states and parameter estimation, besides the ARMSE of multiple simulations
with unknown initial conditions and measurement noise, for evaluating the
robustness and convergence of the estimation. For an experimental dataset of
an EV, the results are the RMSE for state estimation and a comparison of the
friction coefficient estimated by each algorithm.

8.4.1
Simulation Environment Estimation Results

The longitudinal dynamic model is simulated with the same parameters
of the vehicle subjected to experimental tests presented on the Subsection
8.4.2 [116, 190]. For evaluating correctly the methodology, the inputs of the
simulated system are the same as the experimental data, presented in Figure
8.3 and the initial velocity of the vehicle is defined as 1m/s, while the wheels
are supposed to be in free rolling. It is important to note that the front wheels
are not motorized, so that their input currents are null.

We must also observe that the continuous-time system equations must
be transformed into a discrete-time ones. For this purpose, a 4th-order Runge-
Kutta algorithm is used for calculating one-step predictions of the state
equation, aiming to improve the accuracy of the integration.

The first step of all algorithms is the calibration of the initialization
parameters, such as covariance matrices P , Q and R of Kalman Filter ap-
proaches, the window size N and the weighting matrices of the MHSE. For
EKF and UKF algorithms, many researches are focused on this task, as well
as in adaptive approaches. In this paper, after exhaustively trying to find the
best set of parameters through trial-and-error, we have selected the following
initialization matrices for EKF:

P = diag([1E + 5 1E + 5 1E + 5 1E + 5 1E + 5 1E + 3]) (8-5)

Q = diag([1E + 3 1E + 3 1E + 3 1E + 3 1E + 3 1E + 3]) (8-6)

R = diag([1E + 4 1E + 4 1E + 4 1E + 4 1E + 4]) (8-7)
Using the same methodology, the calibrated matrices for UKF algorithm

are defined as presented below:

P = diag([5E − 1 5E − 1 5E − 1 5E − 1 5E − 1 5E − 1]) (8-8)
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Q = diag([1E − 5 1E − 5 1E − 5 1E − 5 1E − 5 1E − 5]) (8-9)

R = diag([1E − 4 1E − 4 1E − 4 1E − 4 1E − 4]) (8-10)

As a first analysis with simulated data, the MHSE is calibrated without
different weights for each portion, considering that the measures are accurate.
So, the matrices P and Q of MHSE cost function (Eq. (4-38)) are defined as
identity. Besides that, we define that the size of the observing horizon is of 10
samples.

To demonstrate the correct estimation of the peak value of the friction
coefficient, we simulate a situation in which the vehicle drives through a region
with a time-varying friction coefficient. The result of the estimation of this
parameter is presented in Figure 8.4.

0 10 20 30 40 50

t (s)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p

Real

EKF

UKF

MHSE

Figure 8.4: Peak value of coefficient of adherence (µp, dimensionless).

It is possible to identify that EKF and MHSE have adequate results, but
with different convergence times. The UKF results may indicate a possible use,
but its convergence is slower. MHSE presents an accurate and quick result, both
in the beginning and in road condition changes on simulations, which indicates
its efficiency.

Another interesting remark we must do is about the range of the
longitudinal slip during the simulation. We observe that this variable, presented
in Figure 8.5 remains in lower values, near to zero, in a region in which the
observability may be harmed. However, the simulation results indicate that the
proposed observer can correctly estimate the friction coefficient even under this
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Figure 8.5: Longitudinal slip of the wheel 4, on simulation environment.

condition. This result is important, because the experimental vehicle operates
in low velocities, and consequently, with low longitudinal slip.

These results may be also analyzed by employing the RMSE and
ARMSE. Some results of RMSE may be misinterpreted, due to oscillations
during the time elapsed until convergence. In this case, the ARMSE analysis
may be more appropriate, since it evaluates the error after a defined time.
The results of ARMSE are presented on Table 8.2. It is important to observe
that all estimators present accurate results, but MHSE is the better one. Only
the results for the 4th wheel are presented in this section, but they reflect the
results of other wheels.

Table 8.2: ARMSE results for simulated data, considering no noise.

State EKF UKF MHSE
v 2.9837E-17 1.4320E-04 1.3433E-05
ω4 7.3171E-17 0.0021 2.8622E-04
µp 9.2328E-16 0.0428 4.5201E-05

In a second analysis, we simulate that system outputs are measured data
with a gaussian white-noise, for evaluating the robustness of all algorithms. The
kind of vehicle on which this research is based is usually equipped with encoders
on wheels, so that the angular velocities measures are relatively accurate. On
the other hand, vehicle velocities are estimated through GPS and IMU-based
measures, which may be inaccurate.

For evaluating the robustness of each algorithm against different measure
errors on the velocity, the simulations are performed with gaussian noises
associated with vehicle longitudinal velocity measures. These simulations are
executed many times, so that we may analyze the RMSE for each sample and
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also the ARMSE, in the convergence region. As we suggest that there is an
error on velocity measures, the matrix Q of the MHSE (Eq. (4-38)) must be
changed, to penalize this output. So, in these simulations, it is defined as:

Q = diag([1E − 1 1 1 1 1]) (8-11)
The results on all evaluated cases are presented in table 8.3. When no

noise is associated with the vehicle velocity, the ARMSE mean of EKF is better
than the MHSE one, but this is acceptable and adequate, due to its small value.
Meantime, when measurement errors are associated with vehicle velocity, the
estimation of µp performed by MHSE is better than EKF, demonstrating its
capacity and robustness under unfavorable situations. Both mean and standard
deviation of MHSE results are better, which demonstrates that the convergence
of MHSE is more appropriate, besides its accuracy.

Table 8.3: ARMSE analysis for friction coefficient (µp) estimation.

Algorithm EKF UKF MHSE

ξn = 0
Mean 1.3112E-15 0.0360 5.6082E-05

St Dev 1.6324E-15 1.6373E-04 9.7575E-06

ξn = 0.001
Mean 2.0421E-04 0.0331 6.1443E-05

St Dev 1.1845E-04 2.3971E-04 3.2034E-05

ξn = 0.01
Mean 0.0046 0.0585 3.6487E-04

St Dev 0.0020 0.0128 1.7865E-04

ξn = 0.05
Mean 0.1019 0.2331 0.0019

St Dev 0.0239 0.0861 0.0010

Regarding processing time (Table 8.4), we may observe that MHSE has
its computational cost as a disadvantage, when compared with Kalman Filter
approaches. Comparing the values to the sampling time of the data (0.002s),
we note that EKF and UKF may be used on online applications. The MHSE,
however, must be performed on better processors, enabling its real application
in high-performance control and estimation.

Table 8.4: Mean time for sample on simulations (s).

Case EKF UKF MHSE
ξn = 0 3.9275E-04 9.3092E-04 0.0127

ξn = 0.001 4.8989E-04 9.8426E-04 0.0126
ξn = 0.01 4.3793E-04 0.0011 0.0131
ξn = 0.05 3.8692E-04 8.4768E-04 0.0136
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8.4.2
EV Estimation Results

The previously presented is also evaluated with experimental data. These
data are made available in [116, 191] and the algorithms are applied, to estimate
the friction coefficient of the road the vehicle has passed. For the experimental
vehicle, data used in this analysis are the current on in-wheel electric motors
(inputs of the system) and the wheel rotation and the longitudinal velocity
of the vehicle (outputs), measured, respectively by encoders and inertial
measurement units. The vehicle presents traction only on the rear wheels,
such as the vehicle model presented in Section 8.2.

In this way, the model presented in simulation results may be validated
with the previously mentioned experimental data. Due to the characteristics
of the signals and looking for better performance, it is important to adjust
the initialization of the matrices and parameters of MHSE. So, for EKF,
initialization matrices are:

P = diag([1E + 6 1E + 5 1E + 5 1E + 5 1E + 5 1E + 4]) (8-12)

Q = diag([1E + 3 1E + 3 1E + 3 1E + 3 1E + 3 1E + 3]) (8-13)

R = diag([1E + 4 1E + 4 1E + 4 1E + 4 1E + 4]) (8-14)

The calibrated matrices for UKF are defined as:

P = diag([1 1 1 1 1 1]) (8-15)

Q = diag([1E − 4 1E − 4 1E − 4 1E − 4 1E − 4 1E − 4]) (8-16)

R = diag([1E − 3 1E − 3 1E − 3 1E − 3 1E − 3]) (8-17)

Due to the usage of experimental data, and the inaccuracy of the
longitudinal velocity measurements, based on GPS and IMU devices. The first
weight matrix must be designed considering the reliability of the dynamic
model and to avoid high oscillations in the friction coefficient estimation. So,
the selected weight matrix is defined as:
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Figure 8.6: RMSE(t) of estimation of longitudinal velocity of the vehicle (dB).

P = diag([1 1 1 1 1 1E + 2]) (8-18)
About the second weight matrix, it must be defined so that higher

values are associated with the most reliable measures. In this case, the higher
entries must be associated with the angular velocities and a lower one to the
longitudinal velocity. Therefore, the second matrix Q is defined as:

Q = diag([1E − 1 1 1 1 1]) (8-19)
The estimation process may be evaluated by the RMSE of the states that

are also outputs of the system. So, the estimation errors, in dB, of longitudinal
vehicle and rotation of the wheel 4 are presented on Figures 8.6 and 8.7.

We observe that all algorithms present relatively good convergence to
the outputs, but it is remarkable that the MHSE presents the best result for
the angular velocity, which is desirable due to the accuracy of this measure.
Although the convergence to the longitudinal velocity, we note that its result is
worse, which, in this case, indicates that the algorithms can bypass the errors
in the measures, improving the accuracy of the friction coefficient estimation.

The friction coefficient µp estimation result is presented in Figure 8.8. We
should note that the algorithms do not present the same value on each sample,
but have similar magnitudes. We remark that there is no reference value for
this result since this parameter is unknown on the experimental dataset used in
this estimation. Different from the Kalman-based algorithms, the MHSE result
is smoother and without oscillations, which is more appropriate for control
applications.

We may also note that the experimental vehicle used for data obtaining
travels with reduced velocity and acceleration, which indicates relatively low
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Figure 8.7: RMSE(t) of estimation of angular velocity of the wheel 4 (dB).
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Figure 8.8: Estimated value of coefficient of adherence.

longitudinal slip. Meantime, as the outputs present convergence, we may
deduce that the values presented are suitable according to road conditions
and employing them on mathematical models should present accurate results
for some tasks such as traction and braking control and path tracking. Besides
that, The lower RMSE values of states estimation indicate that MHSE results
for friction coefficient must be considered most reliable. It is important to note,
that, augmented states are limited to physical bounds, so that the parameter
estimation is saturated at its maximum value on the last third of simulation
time.

DBD
PUC-Rio - Certificação Digital Nº 1912768/CA



Chapter 8. Tire-road Friction Coefficient Estimation Using Nonlinear
Receding-Horizon and Kalman Filter Strategies 92

8.4.3
Discussion

From the results presented in the previous subsections, we must elaborate
on some observations about the research. The first one is related to the
efficiency of the proposed algorithms. We may observe that all can present
adequate estimation results, but EKF and UKF are more susceptible to
covariance matrices initialization, besides the discontinuities on Jacobians and
derivatives, in the first algorithm, which becomes EKF more difficult to employ.
This constitutes an advantage of MHSE, which presents easier calibration and
fewer initialization parameters.

The ARMSE results for multiple simulations with inaccurate initial
conditions and measurement noise demonstrate the robustness of MHSE, in
comparison with KF algorithms. These results indicate that the receding-
horizon approach trends to be more adequate for parameter estimation in
nonlinear systems with noisy data or unknown initial conditions.

The evaluation of the estimators with experimental data demonstrates
that, with an adjustment of the initialization parameters and matrices, the
algorithms converge accurately on the estimation of the states, which are also
outputs of the system. In this way, we may infer that all algorithms can identify
values of friction coefficient which leads to accurate values of the states. We
remark that MHSE presents a more accurate state estimation, which indicates
a more accurate friction coefficient estimation.
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9
Nonlinear Receding-horizon Filter Approximation with Neural
Networks for Fast State of Charge Estimation of Lithium-Ion
Batteries

An important component of electric vehicles that allows optimizing their
autonomy is the Battery Management System (BMS), whose primary goal is
to monitor the State of Charge (SOC) of the battery. The SOC may be es-
timated using filtering algorithms and, in this context, higher accuracy and
computational complexity are of great importance. The present paper aims
at proposing receding-horizon strategies, namely Moving-Horizon State Esti-
mation (MHSE) and Neural Network Moving-Horizon Estimation (NNMHE),
for SOC estimation. Simulated results demonstrate that the unknown lumped
parameters of the battery model are may be jointly estimated with the states
using an augmented states formulation, through the first algorithm. The ac-
curacy of MHSE on the process is high enough to use their results for training
the NNMHE, so that a machine learning based solution, with reduced process-
ing time is found. This approach is evaluated with an experimental dataset,
achieving a coefficient of determination of almost 99% and about 10 times
faster, which proves that it is effective and can be readily employed in an
embedded systems application requiring less computational resources.

9.1
Problem Definition

The main purpose of this research is the evaluation of receding-horizon
observers for simultaneous estimation of the battery states and lumped param-
eters of an ECM. In this way, an augmented formulation of the discrete-time
battery model is adopted, in which unknown parameters are supposed to have
slow-varying dynamics relative to regular states.

Based on the literature review, we evaluate the application of MHSE and
NNMHE for SOC estimation, since they are appointed as potential algorithms
for observing tasks [22, 42].
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9.2
Dataset Description

The dataset used for experimental analysis is provided by NASA Ames
Prognostics Center of Excellence Datasets [131], and presents data measured
on cycling tests with randomly generated current profiles at room temperature
[192]. The battery is a 18650-size one with nominal capacity of 2.1002 Ah
[130, 193].

For experimental analysis, a clipping is taken for evaluation, which
contains approximately 9 hours of data, with a sample time of 10 seconds.
An extract of the electrical current measured on the battery, i in Figure 3.5, is
presented on Figure 9.1. The sign of the current denotes when the battery is
charging (negative) or providing power (positive). For this time window, the
voltage measured on battery terminals is presented in Figure 9.2. We have not
presented all the range used in experimental analysis for easier visualization.
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Figure 9.1: Electrical current measured on battery on experimental test bench,
in A.

9.3
Proposed Approach

To perform simultaneous estimation of states and parameters, we use
an augmented states formulation, in which it is supposed that unknown
parameters are also states, with slow dynamics within the receding-horizon
window. So, based on equation (4-1), we may define input, output and states
vectors, respectively, as u = i, z = Ut,xxx = [Up SOC Rs Rp Cp]T . The
resulting discrete-time equations of the system are presented in Eqs. (3-33)–
(3-35) using the state space formalism can be then obtained. The state
transition functions for a sampling time Ts are

DBD
PUC-Rio - Certificação Digital Nº 1912768/CA



Chapter 9. Nonlinear Receding-horizon Filter Approximation with Neural
Networks for Fast State of Charge Estimation of Lithium-Ion Batteries 95

0 0.5 1 1.5 2 2.5 3

t (h)

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

U
t (

V
)

Figure 9.2: Voltage on battery terminals measured on experimental test bench,
in V.

f1(xk−1, uk−1) = x1,k−1exp
(

− Ts

x4,k−1x5,k−1

)
+ · · ·

+uk−1x4,k−1

[
1 − exp

(
− Ts

x4,k−1x5,k−1

)]
(9-1a)

f2(xk−1, uk−1) = x2,k−1 − ηTsuk−1

Cn

(9-1b)

f3(xk−1, uk−1) = x3,k−1 (9-1c)
f4(xk−1, uk−1) = x4,k−1 (9-1d)
f5(xk−1, uk−1) = x5,k−1 (9-1e)

while the output equation can be defined as

z = h(xxxk) = p(x2,k) − x1,k − ukx3,k (9-2)

where function p(.) has been defined in (3-32) (note that the open-circuit
voltage at each sample UOC,k depends on SOC, or x2,k, on state space
formalism). For that, measured data about the low current discharge must
be used for a polynomial fitting, using for that end a 12th order polynomial as
in [130]. Using the experimental data described in the previous subsection, the
coefficients Ki for the best polynomial fitting are presented on Tab. 9.1, while
the fitting results can be found in Figure 9.3.

It is important to remark that the 3rd to 5th states are time-varying
parameters of the battery, which are jointly estimated with the states. This is
what we call an augmented states formulation for joint states and parameter
estimation, so it is possible to employ off-the-shelf state estimation methods
for SOC prediction considering an unknown battery model. To write the
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Table 9.1: Parameters for polynomial fitting of OCV-SOC measured data.

Ki Value
K0 3.2364
K1 19.0076
K2 -373.8293
K3 4.1383E+03
K4 -2.7800E+04
K5 1.2078E+05
K6 -3.5341E+05
K7 7.1078E+05
K8 -9.8489E+05
K9 9.2391E+05
K10 -5.6025E+05
K11 1.9811E+05
K12 -3.1015E+04
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Figure 9.3: Polynomial fitting of OCV-SOC measured data on test bench.

state equations related to variables, we consider that the system dynamics
is considerably faster than the parameter change within the moving-horizon
window, which is quite reasonable. There will be errors in this approach when
the moving-horizon window does contain samples with different parameters
and the parameter ρ implies slow enough dynamics for the filter, which is
possible to tune.

In the following section, we describe the results for state estimation of
battery SOC.

9.4
Results

In this section, we present the results of the application of the proposed
receding-horizon algorithms for SOC estimation, namely the EKF, MHSE and
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NNMHE. The datasets used for both simulation and experimental results are
detailed in Section 9.2.

The results are presented to allow quantitative comparison. Firstly, we
compare the performance of the MHSE against the classical formulation of
EKF, using the simulated data of a Thévenin ECM. For this purpose, we
compare the RMSE and R2 along the simulation time of the estimation of
SOC, Ut and the model parameters. In this case, we show the influence on
the joint estimation of states and parameters, as well as of the prediction
of system output, made by the receding window size, as well as on the
observability property of the system with augmented states. Additionally, we
present a robustness analysis of the algorithms performed under uncertain
initial conditions.

Once demonstrated the efficiency and accuracy of MHSE, we present
the results of NNMHE, in which an ANN is trained by MHSE results of
experimental data. We present the calibration of the ANN with different
numbers of neurons, through the evaluation of the resulting RMSE and R2

of validation data.
The battery configuration and dataset used are those used in [130] and

made available by the authors of [192] on [131]. All the codes used in this paper
are implemented on MATLAB®. Data is freely available on the internet, and
the source code of the filtering procedure is made available for the interested
reader1.

9.4.1
Simulation Results

A simulation with the input shown in Figure 9.1, extracted from the
experimental data, is used for generating data. The goal is to compare the real
simulated states with the estimated ones, so that it is possible to evaluate the
applicability and accuracy of the MHSE, and empirically assess whether in the
simulated states envelope the error is bounded. As such, we may then employ
the same parameters to estimate the states using real experimental data.

The lumped parameters of the battery are defined as time-varying, so
that we may evaluate the capacity of each methodology in changes detec-
tion. As these parameters are supposed to be unknown along the estima-
tion process, the initial condition of vector states defined for all algorithms
is x0 = [0 0.9 0.05 0.05 500]T . The MHSE is defined using the formula-
tion presented on Eq. (4-36), with a window of N = 20 samples and different
weights are associated with augmented states, using ρ = [1E−8 1E+1 1E−

1https://github.com/helonayala/SOCestimation
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8 1E − 8 1E − 8]. The use of a vector weight allows differentiating the influ-
ence of each state on the cost function, which trends to improve the accuracy
of one at the expense of others.

The EKF must be initialized by 3 matrices P , Q and R, which are,
respectively, the estimate covariance matrix, the covariance of the process noise
and the covariance of the observation noise [17]. After some trial and error,
these matrices are defined as

P = diag([1E − 1 1E − 2 1E − 5 1E − 5 1E4]), (9-3)

Q = diag([1E − 2 1E − 12 1E − 6 1E − 6 1E − 2]), (9-4)

R = diag([1E − 3]). (9-5)
The results of the estimation of states and parameters, as well as of the

output are presented on Tab. 9.2. We may note that the results of all states
and the output are much better using the MHSE, when compared to EKF. It is
important to note that EKF has worse results for parameters estimation, which
are relatively more accurately estimated by the receding-horizon algorithm.

Table 9.2: Results for simulated data.

Method Variable RMSE R2

EKF

Up 2.9412E-4 0.9015
SOC 1.0555E-4 0.9993
Rs 9.7159E-5 0.7867
Rp 1.3664E-4 0.3464
Cp 3.7130 0
Ut 1.5036E-4 0.9994

MHSE

Up 1.3099E-4 0.9805
SOC 6.8222E-6 1
Rs 4.9125E-5 0.9455
Rp 5.4835E-5 0.8947
Cp 1.2851 0.6400
Ut 6.2428E-5 0.9999

Evaluating these simulation results, we may observe that MHSE has
superior results in all analysis, especially on those related to parameter
estimation. The main cause of this difference is the observability of the system
in each case. The EKF worst result for estimation with augmented states
formulation indicates that the system is not fully observable with the single
sample window used. On the other hand, the receding-horizon algorithm
presents better results for both states and parameters estimation, indicating
that the system is full-observable in the window defined on the algorithm or
presents more observable states [180].
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We may evaluate the rank of the observability matrix of the system
with augmented states during the simulation, as defined in [180] for receding-
horizon state estimation methods. In this analysis, we note that with a window
of 1 sample, used on EKF estimation, the rank of the observability matrix
remains at 1 along all simulation time, which implies that the system is not
observable. Meanwhile, for a window size of 20 samples, the system has a
rank equal to 5 on the most simulation time, indicating it is fully observable
in a considerable range. This result is important to understand the model
parameters estimation results and shows that by increasing the window size
we improve the observability property without the need of adding sensors to
gather additional measurements.

To evaluate the robustness and convergence of the observers, many
simulations are executed with different initial conditions, which are presented
in Table 9.3. In this table, we see the error related metrics and also the
mean time needed to perform the estimation on each sample. It is thus
possible to verify if each observer can correctly estimate the state trajectory
under different operating envelopes. We note that MHSE presents the best
ARMSE mean, denoting its robustness, since its result is more accurate and
less oscillatory.

Table 9.3: ARMSE analysis results.

Method Mean Time Variable ARMSE ARMSE
for Sample (s) Mean Std Dev

EKF 9.1322E-5 SOC 7.7879E-11 1.8564E-10
Ut 9.5049E-4 0.0093

MHSE 0.0385 SOC 3.1294E-17 6.9975E-16
Ut 1.1355E-10 6.2754E-10

It is important to note that, despite the high processing time, they could
be used on online applications of SOC estimation, since each step requires
approximately 0.0385s, while the sample time is 10s, when run in a Windows
PC with 32 GB RAM and i7 processor with 2.6 GHz. We note, however, that
in most cases moving-horizon estimation or control are run in real-time in
resource-constrained hardware and demand algorithmic optimization [194], as
the ones provided herein with NNs [195].

The simulation results allow us to infer that MHSE is accurate enough
to produce high fidelity data that may be used for training an ANN able to be
used instead of MHSE, which is proved to be less computationally costly [42].
The solution presented herein offers a way of obtaining a compromise between
precision and computational complexity with machine learning as we shall also
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confirm next when experimental data is employed for training and validation
of the NNMHE.

9.4.2
Experimental Results

As demonstrated in the previous subsection, the MHSE may be, with
a relatively high computational cost, accurately used for SOC estimation.
To associate the accuracy of MHSE with a lower computational effort, the
NNMHE is proposed. The input of the ANN used on it is the information
vector containing the measured inputs and outputs along the receding horizon
defined for MHSE. As output, the NN gives the estimated SOC on the current
sample, that is, on the end of the observing window. This process is illustrated
in Figure 9.4.

Experimental

Data:

Ut , i

Training
���

NN
Online SOC

Estimation

MHSE

Figure 9.4: Flowchart of NNMHE. This filter is trained offline using the SOC
estimated of experimental data, so that a NN that maps the information vector
to the SOC estimated by MHSE is built.

For this, the MHSE with the same configuration presented on Simulation
Results is applied over a large data extracted from the dataset described on
Sec. 9.2, with 32667 samples. The first 20114 samples are used for the NN
training process, while the remaining are used for validation. It is important
to note that the beginning of each data extract must be a sample with a null
current, for which the SOC is precisely defined by the UOC (Eq. (3-35)). Using
this information, the initial condition of each process is defined.

The NN selected for the NNMHE is a feed-forward one, with two hidden
layers, and the first step in its implementation is the definition of the number
of neurons employed. Some attempts are done, and their results are presented
on Tab. 9.4. For both RMSE and R2 coefficients, we note that a better
performance of the network with 10 neurons, achieving an R2 of 0.9847. This
indicates that the results are close to the validating data, that is the SOC
estimated through MHSE.

The resulting R2 for both training and test of NN with 10 neurons is pre-
sented in Figure 9.6. We may note that the R2 on the test phase (0.98466) is
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Figure 9.5: Estimation of the SOC, with experimental data, using MHSE and
the ANN with 10 neurons.

Table 9.4: Validation results of the ANN trained with MHSE.

Neurons Mean Time for sample (s) RMSE R2

10 0.0043 3.4173E-4 0.98466
20 0.0042 4.8560E-4 0.96903
30 0.0042 4.3652E-4 0.97497
40 0.0042 10.8460E-4 0.84548
50 0.0043 6.7308E-3 0.94049

high and close to the training one (0.99811), which demonstrates the efficiency
of the NNMHE. The results demonstrate also the better computational effi-
ciency of the NNMHE, since the mean time for each sample is 0.0043s, while
the MHSE requires almost 10 times higher.
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Figure 9.6: R2 for SOC estimated by NNMHE with 10 neurons in the (a)
training process and the (b) test with the resulting NN.
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9.5
Discussion

From the results presented in previous subsections, we may mention
that MHSE is robust and accurate, which makes it proper and adequate for
SOC estimation, as denoted by the quantitative error metrics shown. The
computational cost is greater, however, when compared to classical filtering
methods. We must also remark that it has simple calibration and relative ease
of implementation. Besides that, we may predict that the augmented states
discrete-time system of the battery has full observability or a high number
of observable states for the receding window defined in the algorithm. This
is an important feature of moving-horizon filters, as they allow to improve
the observability condition without adding sensors and thus avoiding costs by
smarter algorithmic decisions.

Once demonstrated that MHSE has more accurate performance than
EKF and that the receding window of time allows to improve observability,
it may be used for training the NNMHE, so that it may perform, with
considerably less computational effort, the estimation of SOC.

Finally, we demonstrate that the computations cost of the optimal MHSE
can be alleviated by using NNMHE, which is an approximate version of the
filter. It is an important filter option for systems with lower sampling times
and limited hardware resources. It allows lower samplings times at a price tag
of less accurate estimation. Better accuracy may be achieved as the results
herein presented are non-exhaustive, as the filter construction is dependent on
precise data generation for training, spanning the full operating envelope for
SOC, or still by performing architecture search [196].

The results demonstrate also that the approximated solution based on
ANN is perfectly tailored for hardware implementation. Our recent work
shows that it is possible to embed conveniently ANN with relatively complex
structures on FPGA getting very fast responses (in the order of microseconds)
[195]. We note, however, that it is very time-consuming to obtain ad-hoc
hardware solutions for implementing ANN on FPGA and thus further research
is encouraged in exploring new hardware solutions, such as the Nvidia Jetson
platform [197].
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10
Hierarchical Nonlinear Model Predictive Control for Path
Tracking of In-Wheel Motor Drive Electric Vehicles

The rising use of electric vehicles with different levels of automation leads
to the development of novel control strategies, aiming for better performance
with safety and driveability. Researches about MPC indicates its advanced per-
formance for different systems, which is penalized with a high processing time.
In this context, this contribution aims to propose a hierarchical framework for
the control of electric vehicles with independent in-wheel motors, which is ap-
plied for velocity and path tracking. The hierarchical framework is composed
of a novel structure, in which the upper layer is performed by MPC, aiming
to define the reference forces on the vehicle chassis. Through static relations,
these forces are related to wheel angular velocity and steering angles references,
which are the inputs of the low-level controller. We demonstrate, through a
velocity tracking analysis, the effectiveness and advantages of the hierarchical
approach, compared to a nonlinear MPC law. The path tracking case study is
used for presenting the application of the hierarchical control law on a coupled
longitudinal-lateral dynamic model, using different sample times for MPC layer
and the open-loop simulations, which enlarges the prediction window and re-
duces considerably the computational efforts. An experimentally obtained tire
dataset is used on the open-loop simulations, which includes effects do not
predicted in mathematical models and, thus, approaching the results to real
situations.

10.1
Dataset Description and Parameters Estimation

For evaluation of the hierarchical framework proposed, an experimental
dataset of tire variables is used for the open-loop simulations, approaching real
situations. The dataset is made available on [198] and includes information
about longitudinal and lateral forces, under different conditions, such as
internal pressure and normal load.

In this contribution, we extract the data concerning the vehicle model and
the tire force is defined through a look-up table. For the NMPC algorithm, the
dataset is used for obtaining approximate Magic Formula parameters, which
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Figure 10.1: Available experimental data about longitudinal force.

may be employed properly in the optimization algorithm. The Figure 10.1
demonstrate the diversity of data for longitudinal force measurements.

The friction coefficient data is obtained by dividing the traction force
by the normal load of each sample. The data indicate that normal load may
affect the friction coefficient value. For the open-loop simulations, we identify
the parameters using the data related to an internal pressure of 82 kPa and
the maximum normal load of 1100 kN, which are the nearest of the vehicle
model used on the contribution, whose parameters are presented in Table 8.1.

The data related to the used configuration is extracted through the k-
means clustering algorithm. Using a classical formulation of Particle Swarm
Optimization (PSO), we may find the Magic Formula parameters (Table 10.1).
The friction coefficient data and the fitted curve is presented in Figure 10.2.

A similar optimization problem is used for finding approximate lateral
force magic formula parameters, which is used for calculating the cornering
stiffness of each wheel, since this parameter is the derivative of lateral force
near zero. The cornering stiffness of the front and rear wheel are different since
they are dependent on normal loads. The parameter ay is calculated using the
aligning moment and lateral forces values.

All the estimated parameters are demonstrated on Table 10.1.

10.2
Hierarchical Framework for EV Control

The proposed hierarchical framework is presented in Figure 10.3. Usually,
for path tracking, only information about the position related to the global
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Figure 10.2: Fitted curve for longitudinal friction coefficient.

Table 10.1: Identified tire parameters.

Parameter Value
Ax 2.1815
Bx 1.7245
Cx 11.6041
Dx 0.4738
SHx 0.0034
SV x -0.2145
C∗

α 33.7928
SHy -0.0056
SV y -0.0756
ay 0.0143

frame is available, but, for more accuracy, we may calculate the consequent
attitude angle and its rate and the velocities related to the body frame,
which are evaluated on the Newton-Euler equations. These data are the main
information used on the NMPC layer, in comparison to the current values of
the state variables.

The symbols adopted on the Figure 10.3 are explained on the Table 10.2.
The index d indicates that it is the desired variable and i indicates the i-th
wheel of the vehicle model.

The NPMC layer has as output the set of longitudinal and lateral forces,
written on the vehicle body frame, that is, the forces of the wheels on the
chassis that allow achieving the references of the vehicle states.

The second layer of the framework is not a control task, but a static
relation among the forces on the vehicle body frame and the angular velocities
on wheels and steering angle. Its first step is to define the longitudinal force
on the wheel frame and the steering angle, which is an argument of the lateral
force on the wheel frame. The relation among the forces written on the wheel
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Figure 10.3: Proposed Hierarchical Framework.

Table 10.2: Description of the symbols used on the framework.

Symbol Description
x Longitudinal displacement on vehicle body frame
y Lateral displacement on vehicle body frame
ψ Yaw angle
vx Longitudinal velocity on vehicle body frame
vy Lateral velocity on vehicle body frame
ωz Angular velocity of the vehicle
Fx Force along x-axis on vehicle chassis
Fy Force along y-axis on vehicle chassis
ω Angular velocity of the wheel
δ Steering angle of the wheel
Tt Traction torque
Ts Steering torque

frame and vehicle body frame may be established by the following equations
system: F

d
wxi

cos δd
i − F d

wyi
sin δd

i = F d
xi

F d
wxi

sin δd
i − F d

wyi
cos δd

i = F d
yi

(10-1)

As the lateral force on the wheel frame depends on the sideslip angle (Eq.
(3-8)), which depends on the steering angle (Eq. (3-5)), the system above has,
actually, only two variables, that are the longitudinal force and the steering
angle, as follows: F

d
wxi

cos δd
i − Cαi

(δd
i − βi) sin δd

i = F d
xi

F d
wxi

sin δd
i − Cαi

(δd
i − βi) cos δd

i = F d
yi

(10-2)

So, the first step of static relation is to solve the nonlinear equations
system (Eq. (10-2)). Once defined the desired value of longitudinal force on
the wheel frame, the second step may be performed. It consists on to define
the wheel angular velocity that produces the desired force.
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In this way, we must note that, for a part of the domain of the slip-force
function (Eq. (3-3)), there are two possible values of longitudinal slip for a
given traction force (Figure 10.4), on the stable and unstable regions.

Figure 10.4: Stable and unstable regions of tire curve.

Then, in the static relation phase, we must adopt the slip reference inside
the stable region, assuring safety and driveability for the vehicle. Once defined
the slip reference, we may find the angular velocity desired, which is directly
related to the slip, for a given longitudinal velocity, according to Eq. (3-2).

ωd
i = vxi

R
(1 + µ−1

x (F d
wxi

)) (10-3)
Note that the inverse function µ−1

x has its range limited to [−λmax, λmax],
in which λmax is the longitudinal slip for maximum friction force.

The last step of the Hierarchical Framework is the PID control as a
low-level controller, in which the traction and steering torques are defined as
a function of error and its derivative and integer, such defined in classical
literature.

10.3
Results

The results of this contribution are presented in this section. Firstly,
the hierarchical framework is applied to a quarter-car model (Section 3.3),
for longitudinal velocity control. Through this case study, we demonstrate the
effectiveness of the hierarchical control, compared to a pure NMPC algorithm.
The main advantage presented is related to the computational effort, which is
considerably smaller.

In the sequence, the application of the hierarchical control is evaluated for
path tracking, using a single-track model (Section 3.4). In this case, we evaluate
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the velocity and path tracking during a double-lane change maneuver, as well
as the efficiency of the low-level controller. In this case study, different time
samples are used for NMPC and open-loop simulations and the tire forces are
defined using experimentally obtained data, to evaluate the effectiveness of the
control under tire model inaccuracies.

10.3.1
Longitudinal Vehicle Control Results

As a simpler model, the single-corner or quarter-car model may be
effectively used for validating the hierarchical framework proposed. In this case,
the HMPC is compared to NMPC, in which the torque applied on the wheel
is defined directed by the optimization problem. In this first result analysis,
both MPC algorithms are used with the same sampling time, so that the
optimization problem is performed at each sample. In this way, we intend to
demonstrate that the hierarchical framework improves the processing time.

In this first analysis, we do not consider different sample times for
simulation, so that a sampling rate of 102Hz is adopted for both simulations.
The MPC parameters initialization, which are scalar and not matrix in this
situation, are defined as Q = 1E4, R = 0 and S = 1E − 3.

In the single-corner model, the only output considered is the velocity,
whose result of the simulation is presented in Figure 10.5.
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Figure 10.5: Vehicle velocity for NMPC and HMPC.

Firstly, it is important to note that the hierarchical algorithm presents
a slightly worse result at the beginning of the simulation, due to the settling
time of the low-level controller. The performance of both strategies is harmed
on high variations of velocity reference, on 10s and 15s, which is due to friction
force limits. That is, the acceleration or deceleration required is not feasible
for the given tire-road conditions.
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Figure 10.6: Vehicle velocity for NMPC and HMPC.

We may also note these observations in Figure 10.6, in which the errors
related to reference velocity are presented. It is possible to note that the errors
due to velocity variation are similar in both cases. As for the error due to
settling time, the error of HMPC is small and negligible when compared to
absolute values.

Regarding driveability and safety, we may note in Figure 10.7 that both
controllers can keep the longitudinal slip inside the stable region. Considering
that the λmax = 0.1481, we may note that for both NMPC and HMPC, the
tire slip is inside the stable region, which ensures that the driving conditions
are suitable.
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Figure 10.7: Longitudinal slip for NMPC and HMPC.

Nonetheless, the processing time of HMPC is much smaller than the
presented by NMPC, as we may observe in Figure 10.8. It is possible to note
that NMPC, as proposed, is not able to be used online, since it is higher than
the defined sample time of 0.01s. Meanwhile, the processing time of HMPC
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is lower than this value, denoting it may be used on online applications and
reinforcing its superior performance.
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Figure 10.8: Processing Times, in seconds, for NMPC and HMPC.

Evaluating the differences between the torque on wheels (Figure 10.9),
we may note that on most of the simulation time, the defined inputs for both
algorithms are close. That is, the HMPC achieves values close to NMPC, with
more efficiency.
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Figure 10.9: Torque defined by NMPC and HMPC.

10.3.2
Path Tracking Results with Experimental Data of Tires

On the single-track model simulations, we adopt a novel feature, com-
pared to the one presented in the first case study, that is different sample times
for MPC and PID controllers. We may observe that a higher sample time for
the MPC algorithm enlarges the window time of prediction, which trends to
anticipate changes on references to the controller and, then, require inputs with
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Figure 10.10: Path tracking results comparison.

smoother variations. In the simulations, we adopt a sampling rate of 1E+03Hz
for the vehicle dynamic system, and consequently for the low-level controller,
and one of 2E + 01Hz for the NPMC layer.

As PID is faster for processing, its sample time is the same employed
in the open-loop simulation of the dynamical model. Besides that, we adopt
experimental data for tire dynamics modeling [198] and, so, the longitudinal
and lateral forces on the tires are defined through a lookup table with the
experimental data. In the wheel controller algorithm, these data are used
for fitting the longitudinal (Eq. (3-3)) and lateral (Eq. (3-8)) force curves,
as commented on Section 10.1.

The reference path for control is a double lane change [199], which we
consider that must be executed in a maximum time of 10s, with approximately
constant longitudinal velocity. So, the initial reference is the position (X, Y )
in the fixed frame and the time vector. As consequence, we define, by approx-
imations, the yaw angle ψ, the yaw rate ωz = ψ̇ and the components of the
velocity vx and vy, related and written in the body frame.

As the first result, we may observe the path tracking result (Figure 10.10),
which compares the reference path of the vehicle CG and the obtained using
the hierarchical framework.

Despite the errors presented, we may evaluate that the proposed con-
troller is effective, since the error is negligible when compared to vehicle di-
mensions and path width. The requirements of execution time and stability
are also assured, since the longitudinal velocity (Figure 10.11) and the yaw
angle (Figure 10.12) of the vehicle are correctly tracked, with negligible errors.

Concerning low-level controller, we may note that it is also effective. The
traction control allows achieving the references for wheel angular velocity after
a few seconds of simulation, which is sustained throughout the maneuver, as
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Figure 10.11: Longitudinal velocity of the vehicle.
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Figure 10.12: Yaw angle of the vehicle.

observed in Figure 10.13.
The steering control presents faster convergence and we may observe in

Figure 10.14 that the controller can track the references of steering angles for
both wheels along with all the simulation.

Regarding processing time, we note that the NMPC layer has a con-
siderably higher processing time, about 100 times the low-level one. As the
NMPC layer is only executed every 50 samples of the dynamic system, we
may conclude that the total computational effort is quite reduced.

10.4
Discussion

The results of single corner simulations, presented in Subsection 10.3.1,
demonstrate the efficiency of the proposed hierarchical framework, reducing
considerably the processing time, ensuring the safety and the velocity tracking
suggested as the objective of the longitudinal control. As a simpler model
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Figure 10.13: Reference and real wheel angular velocities.
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Figure 10.14: Reference and real steering angles.

with a similar hierarchical control structure, this case study demonstrates the
capacity of the proposed framework in reducing the controller processing time.
Further researches may be conducted using this model and the hierarchical
controller proposed, especially evaluating strategies that ally good performance
with efficient energy consumption, which is an issue of large interest in recent
researches [200, 201].

About the path tracking tasks, we observe that a simulation performed
using the single-track model allows us to correctly evaluate and calibrate the
control laws, reducing the order of the system. Thus, we perform reliable
simulations with reduced computational efforts. The use of the experimental
tire dataset approaches the simulations to real conditions, since effects not
always predicted on mathematical formulations are consequently involved.

The results for the single-track model demonstrate that the hierarchical
framework can correctly control the vehicle path and the proposed division of
tasks is suitable. As the NMPC layer is restricted to the rigid-body motion of

DBD
PUC-Rio - Certificação Digital Nº 1912768/CA



Chapter 10. Hierarchical Nonlinear Model Predictive Control for Path Tracking
of In-Wheel Motor Drive Electric Vehicles 114

the vehicle, the optimization problem is executed with a lower order, improving
its performance. The static relation takes advantage of the mathematical model
of the vehicular systems and defines the reference of the low-level controller,
which is properly executed with a classical PID.

We note also that the use of different sampling rates for NMPC and
the complete dynamic model is an effective solution for the commonly high
computational efforts required for MPC-based systems. A higher sample time
for NMPC enlarges the time window of prediction, which allows previewing
changes on references in advance. Besides that, it allows the execution of
many samples for the low-level controller for each NMPC execution, reducing
considerably the processing time.
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Conclusions

In an overall conclusion, we may observe on the results of all contributions
presented that the proposed objectives have been achieved, and the estimation
and control algorithms are demonstrated to be efficient, through simulated
and/or experimental data. Hereafter, the specific conclusions are commented
on.

Firstly, the methodology proposed for grey-box identification of time-
invariant parameters is effectively applied to the estimation of structural pa-
rameters of landing gears. Even in scenarios with a large scale of measurement
noise, the stiffness and damping of landing gear structure are predicted with
small deviations, which do not affect the gear walk simulation. Since the simu-
lated data was obtained from a complete model, which considers even the tire
dynamics, we presume that the methodology may be applied to real drop test
data. This application is important for the practical robust control design of
aircraft braking systems.

Regarding the state estimation on vehicle and tire dynamics, we may
conclude about the efficiency and superiority of the MHSE in comparison to
EKF and UKF on state estimation for nonlinear applications, especially with
friction and discontinue efforts. In the studied case, all algorithms estimate
the non-measured states. However, in the performance analysis, the MHSE
presents better and more robust results, followed by UKF, especially when it
is considered the measurement errors and uncertainties in the initial conditions
of the system. We remark that UKF presents a good cost-benefit ratio, since
its results are considerably good, with low processing time.

These algorithms are also evaluated for friction coefficient estimation for
vehicle control applications. Augmented states formulation is demonstrated as
suitable for estimation tasks on vehicle dynamics and it may be useful even
when states and parameters must be simultaneously estimated.

We observe that all nonlinear observers present adequate results, but
Kalman Filter based approaches are highly harmed when the calibration is
not suitable, which does not occur easily in MHSE.

Regarding accuracy and convergence, we note that MHSE presents the
best performance since it is more robust under noisy measures and inaccurate
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information about initial conditions. This robustness is identified through
ARMSE results for multiple simulations.

Despite many advantages, the MHSE has as its main disadvantage the
processing time, which is higher than the presented by EKF and UKF. Anyway,
the use of better processors and faster programming languages may become
possible online applications of MHSE in observing tasks [202].

Finally, the application of the nonlinear estimator on experimentally
obtained data demonstrates that outputs observed converge with the proposed
nonlinear estimators. The lower levels of errors on state estimation presented
by MHSE indicate that the friction coefficient estimated by it must be nearest
to real values, and, consequently, more reliable.

The receding-horizon algorithms present also adequate results for simul-
taneous states and parameters estimation for BMS applications, specifically
SOC estimation. Comparing the EKF with the MHSE results unveils that us-
ing a window for estimation, instead of only the most recent data, increases
the accuracy and also is necessary for achieving full observability of augmented
states and parameters discrete-time system.

Simulation results demonstrate that the MHSE estimates accurately and
simultaneously the battery SOC as well as unknown lumped model parameters.
Having proper processing time for an online application, it is possible to
readily employ it. Nonetheless, as a faster solution, we present the NNMHE
for SOC estimation, which presents suboptimal results with considerably less
complexity and processing cost. The experimental results demonstrate that its
methodology may be successfully employed on BMS, since it presents suitable
evaluation metrics, achieving a R2 of almost 99% on validation tests.

Regarding control of electric vehicles with independent in-wheel motors,
we may conclude that the NMPC is an effective control law for vehicle control,
and it can predict optimal control inputs for the system. Meantime, as the
vehicle systems are usually complex and present nonlinear phenomena, such
as friction, the NMPC applied for the complete dynamic model may require
high computational effort, as demonstrated.

In this way, the HMPC results have demonstrated that, without losing
reliability and performance, the control task may be divided, earning on
processing time. So, the rigid-body dynamics, which is the more relevant to a
path and velocity tracking, is controlled by the MPC layer, defining the proper
longitudinal and lateral forces for the proposed task. On the other hand, the
classical PID controller may achieve good results for the low-level control, since
the dynamics of the systems are relatively simpler.
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Future Works

From all results and discussions of each contribution, it is possible to list
some future possible researches that may be conducted from those presented
in this work.

About the grey-box identification of time-invariant parameters, there
are two main future possibilities. The first one is the application of the
identification process with the formulation provided by different methods
of dynamic modeling, especially bond graphs. This technique allows the
integration of models of the different systems, by the coupling of power inputs
and outputs [188]. So, it is possible to construct and identify parameters of
an entire aircraft, as well as associate predictive control algorithms for its
automation.

The second one is the improvement of the identification process. In
complex systems, with many parameters, it is important to demonstrate and
understand which ones are identifiable, and then, apply an identification
process focused on these. The identifiability analysis enables one to infer
whether the estimation of the parameters based on measurements is unique,
thus granting greater confidence in the parameters estimates concerning fitting
error amplitudes. In other words, the identifiability property holds if a set of
model parameters will map to a different set of measurements [189]. In the case
of landing gear modeling, it is important to have such theoretical confirmation
as this model is used to certificate aircraft.

Related to the second contribution, it is suggested the application of the
estimation algorithm in complete vehicle models, considering all wheels and the
lateral dynamics, in which it is possible to evaluate the estimator behavior on
different maneuvers. In this sense, all tire longitudinal slip and sideslip angles
must be accurately estimated, which possibilities suitable control strategies for
agile, stable and high-speed path tracking.

Another future possible work is the association of the estimators to
complex control strategies, intending to achieve prescribed velocities with
optimized longitudinal slip. We must remark that in autonomous vehicle
applications, state observers allow the possibility to define a suitable controller
for path tracking, agility, or stability.
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It is also suggested the application of the developed estimators in other
mechanical applications in which the friction efforts must be mitigated or
estimated properly, especially on discontinuous systems, as, for example, with
Coulomb friction, in which MHSE must present better performance compared
to Kalman Filter approaches, since it is robustness demonstrated on the results
section.

The friction coefficient estimation contribution may be continued with
an observability analysis of the augmented states formulations for vehicle
dynamics, which may lead to an adapted algorithm for MHSE. Another
possible contribution is the proposal of hierarchical frameworks for MHSE,
that may reduce processing times and facilitate the online application of
this algorithm for vehicle control, as well as proposed for MPC control laws
[49, 50, 169]. Finally, we suggest that the same methodology may be applied
to the lateral dynamics of the vehicle, so that cornering stiffness and other
tire-road parameters may also be estimated. Despite their relevance to reliable
controllers, these parameters are hardly obtainable, which justifies the use of
estimation processes.

It was demonstrated that NN may be an effective alternative to MHSE,
but its results can be improved by using experimental data obtained on a
highly instrumented test bench, in which it is possible to measure SOC and
the filter thus constructed used online. Additionally, we would like to develop
more complex lumped parameters battery models in addition to MHSE, to
improve filter accuracy and evaluate its impact on real-time computational
time. Another possibility is the evaluation of state estimation dependent on
temperature. This problem may be dealt with time-varying parameters, as we
have used, or state-dependent parameters, which can be conveniently solved
with receding-horizon approaches, but requires more complex battery models
[34].

Moreover, we may use different NN model construction procedures by
leveraging a larger amount of data in a receding-horizon fashion bypassing the
MHSE procedure, which will still use the known first principles for battery
SOC estimation while permitting a full NN solution with well-known software
frameworks [203] also on heterogeneous platforms [197, 204]. Finally, this
methodology may be also tested with different machine learning techniques,
since its use for approximating control and estimation laws is a recent topic of
research [205].

In the advanced control field, we suggest the investigation of other
controllers for the low-level layer, as alternatives for the classical PID, which
requires an exhaustive task of trial and error for calibration. Another future
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possibility is the integration of the hierarchical controller to the Battery
Management System (BMS), ensuring an optimized energy consumption of
the electric motors [206].
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